\#1 When reading a measuring instrument, read to the ACTUAL PRINTED LINE plus, the next
IMAGINED LINE.
You Always must add one more line than is visible.
\#2 PRECISION is a measurement of how many decimal places your instrument goes. example
$18.7 \underset{ }{\leftarrow}$ less precise 18.713
\#3 How to divide and multiply using significant figures.

RULE for X or \div the answer cannot have more sig figs than the worst number that was calculated.

Rule

Rule for A and -
Your answer can only have digits as far right from the decimal dot as the worst number calculated

$$
\frac{\begin{array}{c}
0.04 \\
1.3 \\
0.092
\end{array}<\text { this }}{\substack{\text { worst } \\
1.432}} \int_{\substack{\text { answer only goes } \\
\text { to here }}}
$$

Answer $=1.4$

Determine the number of significant figures in the following measurements. Or write 'Infinite' if there are infinite significant figures

1) 100.1 g four
2) 4200 km two
3) 473 mL \qquad three
4) 330 mL of Pepsi two
5) 0.002 m one
6) Circle any things below that have INFINITE significant figures.
one student weighs 88.5 kg and the other weighs 90.0 kg 1 meter is the same as 100 cm 1 dozen daisies is 12 daisies East high school contains $3,449,339$ bricks

There are 28 students in the room
Round each of the following to 3 significant figures.
13)

15)
14) 16.2455 m 16.2
16)

Determine the number of significant figures in the following measurements. Or write 'Infinite' if there are infinite significant figures
7) 0.00020 \qquad 10)
8) 842.0 cm

11)
9) $640,002 \mathrm{~m}$ SIX
12)

Round each of the following to $\mathbf{3}$ significant figures.
17)

> 18)
19)

21)

$$
\begin{align*}
& 0.01245 \mathrm{~s} \frac{0.0125}{0.107} \\
& 0.10652 \mathrm{~g} 0.107
\end{align*}
$$

Round each number to the nearest hundred.
6) 533 \qquad
2) 327

7) 749 \qquad
3) 859
8) 484
4) 777
9) 749
5) 863
10) 734

Round each number to the nearest hundred.

1) $9,551 \quad 9600$
2) 7,474 \qquad
3) 5,379 \qquad 7) 6,326 \qquad
4) $\mathbf{1 , 4 2 5}$ \qquad 8) 9,984
5) 6,947
6) 6,298 \qquad \because
7) 3,196
8) 1,751

$$
\begin{gathered}
\text { want a better } \\
\text { explanation of } \\
\text { today's lesson? } \\
\text { read these pages } \\
\text { from the } \\
\text { textbook, below: }
\end{gathered}
$$

Practice Problems

9. Perform each operation. Give your answers to the correct number of significant figures.
a. 61.2 meters +9.35 meters + 8.6 meters
79.2 meters
b. 9.44 meters -2.11 meters 7.33 meters
c. 1.36 meters +10.17 meters

$$
\begin{aligned}
& \text { d. } 34.61 \text { meters - } 17.3 \text { meters } \\
& 17.3 \text { meters }
\end{aligned}
$$

10. Find the total mass of three diamonds that weigh 14.2 grams, 8.73 grams, and 0.912
gram. 23.8 grams

Chem ASAP!

Problem-Solving 10
Solve Problem 10 with the help of an interactive guided tutorial.

Addition and Subtraction The answer to an addition or subtraction calculation should be rounded to the same number of decimal places (not digits) as the measurement with the least number of decimal places. Work through Sample Problem 3-3 below which provides examples of rounding in addition and subtraction calculations.

Sample Problem 3-3

Perform the following addition and subtraction operations. Give
each answer to the correct number of significant figures.
a. 12.52 meters +349.0 meters +8.24 meters
b. $\mathbf{7 4 . 6 2 6}$ meters -28.34 meters

1. ANAL YZE Plan a problem-solving strategy.

Perform the required math operation and then analyze each measurement to determine the number of decimal places
required in the answer.
2. SOLVE Apply the problem-solving strategy.

Round the answers to match the measurement with the least number of decimal places.
a. Align the decimal points and add the numbers.

$$
\begin{array}{r}
12.52 \text { meters } \\
349.0 \text { meters } \\
+\quad 8.24 \text { meters } \\
\hline 369.76 \text { meters }
\end{array}
$$

The second measurement (349.0 meters) has the least number of digits (one) to the right of the decimal point. Thus the answer must be rounded to one digit after the or 3.698×10^{2} meters.
b. Align the decimal points and subtract the numbers.

$$
\begin{array}{r}
74.626 \text { meters } \\
-28.34 \text { meters } \\
\hline 46.286 \text { meters }
\end{array}
$$

The answer must be rounded to two digits after the decimal point to match the second measurement. The answer is 46.29 meters, or 4.629×10^{1} meters.
3. EVALUATE Do the results make sense?

The mathematical operations have been correctly carried out and the resulting answers are reported to the correct number of
decimal places.

Multiplication and Division In calculations involving multiplication and division, you need to round the answer to the same number of significant

You can see in Figure 3.9 that the calculator answer (5.7672) must be rounded to three significant figures because each measurement used in the calculation has only three significant figures.

The position of the decimal point has nothing to do with the rounding process when multiplying and dividing measurements. The position of the decimal point is important only in rounding the answers of addition or subtraction problems.

figure 3.9

This calculator was used to multiply the length and width measurements of a bolt of fabric, 3.24 meters by 1.78 meters, each of which has three significant figures. The area of the fabric is really not known with the precision suggested by the calculator. What is the product when correctly rounded?

Sample Problem 3-4

Perform the following operations. Give the answers to the correct number of significant figures.
a. 7.55 meters $\times 0.34$ meter
b. 2.10 meters $\times 0.70$ meter
c. 2.4526 meters $\div 8.4$
d. 0.365 meter $\div 0.0200$

1. ANALYZE Plan a problem-solving strategy.

Perform the required math operation and then analyze each of the original numbers to determine the correct number of significant figures required in the answer.

2. SOLVE Apply the problem-solving strategy.

Round the answers to match the measurement with the least number of significant figures.
a. 7.55 meters $\times 0.34$ meter $=2.567$ square meters $=$ 2.6 square meters
(0.34 meter has two significant figures.)
b. 2.10 meters $\times 0.70$ meter $=1.47$ square meters $=$ 1.5 square meters
(0.70 meter has two significant figures.)
c. 2.4526 meters $\div 8.4=0.291976$ meter $=0.29$ meter (8.4 has two significant figures.)
d. 0.365 meter $\div 0.0200=18.25$ meters $=18.3$ meters (Both numbers have three significant figures.)

3. EVALUATE Do the results make sense?

The mathematical operations have been performed correctly, and the resulting answers are reported to the correct number of places.

Practice Problems

11. Solve each problem. Give your answers to the correct number of significant figures and in scientific notation.
a. 8.3 meters $\times 2.22$ meters $1.8 \times 10^{\prime}$ square meters
b. 8432 meters $\div 12.5$ 6.75×10^{2} meters
c. 35.2 seconds $\times 1$ minute $\stackrel{F}{ }$ 60 seconds 5.87×10^{-1} minute
12. Calculate the volume of a warehouse that has inside dimensions of 22.4 meters by 11.3 meters by 5.2 meters.
(Volume $=l \times w \times h$)
1.3×10^{3} cubic meters

ChemASAP!

Problem-Solving 12
Solve Problem 12 with the help of an interactive guided tutorial.

