## How to draw electron configurations (first two types...)

CAeMis+ry: http://genest.weebly.com

Stop in for help every day at lunch and Tues, Weds., &Thurs after school!

After-hours question? Email me at home: eagenest@madison.k12.wi.us





Place the following events in chronological order (1 = first, 4 = last) to describe how an electron absorbs and emits energy:

- electron absorbs energy at ground state.
- electron jumps to excited state.
- atom is energized with electricity.
- electron falls to ground state.

3

\*\* Put a star by the step where light is emitted.

## The next four questions all refer to the black arrows below which show three possible transitions for an electron orbiting around a nucleus



- Lines 1, 2, and 3 all represent an electron dropping down.
   When this happens the atom will
  - a. Emit a photon
  - b. Absorb a photon
  - c. Emit a proton
  - d. Absorb a proton
  - 10. Of these three electron movements, which is the highest

energy?

- a. transition
- b. transition 2
- c. transition 3
- 11. If transition 1 and transition 2 make an orange photon and a green photon, respectively, what color photon might transition 3 make?

  | Blue | (I will accept any reasonable answer).
- 12. Draw one new line labeled (6) onto the bright line emission spectrum in the box to showthe position where the light caused by 6 would appear



- 13. Which of the following statements is most likely?
  - a. transition ④ is from the absorption of a large amount of energy and transition ⑥ is from the absorption of a small amount of energy
  - b. transition (4) is from the absorption of a small amount of energy and transition (6) is from the absorption of a large amount of energy
  - c. transition 4 is from the *emission* of a Blue photon and transition 6 is from the absention of a Blue photon
  - d. transition (4) is from the *emission* of a Red photon and transition (6) is from the absorption of a red photon
- Mark (E)xcited state or (G)round state for each of the following electron configurations of neutral atoms.
  - a. \_\_\_\_\_\_0-1-0
  - b. <u>G</u> 1-0-0
  - c. 6 2-0-0
  - d. E 0-2-0



