\qquad
Date \qquad Pd \qquad

Chemistry - Unit 14 Objectives

By the time we finish this unit, you should be able to do these:

1. Describe properties of aqueous solutions of acids and bases.
2. Account for differences between acids and bases in terms of the Arrhenius model.
3. Use the Bronsted-Lowry model of acids and bases to identify the proton donor, proton acceptor, conjugate acid and conjugate base in a given equation.
4. Describe strength of weak acids and bases in terms of the extent to which they compete with water for H^{+} ions.
5. Distinguish "concentrated" from "strong" and "dilute" from "weak" as these terms are used to describe acids and bases.
6. Given the mass (or number of moles) of a known strong acid or strong base and the total volume of solution, calculate the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and [OH^{-}].
7. Describe indicators as

weak acid/base mixtures whose acidic and basic forms have different colors.	
8.Recognize that pH is a way of describing the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$] of solutions using a logarithmic scale. Given the [H3 O^{+}] or pH, calculate the other.	
Identify the endpoint of a titration as the point at which the rate of change of [H3 O^{+}] is greatest.	
10. Given the volume and	
concentration of known	
acid (or base) used to	
titrate a base (or acid),	
calculate the concentration	
of the unknown solution.	

