Date _____ Pd ____

Chemistry – Unit 14 Objectives

By the time we finish this unit, you should be able to do these:

1.	Describe properties of aqueous solutions of acids and bases.	
2.	Account for differences between acids and bases in terms of the Arrhenius model.	
3.	Use the Bronsted-Lowry model of acids and bases to identify the proton donor, proton acceptor, conjugate acid and conjugate base in a given equation.	
4.	Describe strength of weak acids and bases in terms of the extent to which they compete with water for H ⁺ ions.	
5.	Distinguish "concentrated" from "strong" and "dilute" from "weak" as these terms are used to describe acids and bases.	
6.	Given the mass (or number of moles) of a known strong acid or strong base and the total volume of solution, calculate the $[H_3O^+]$ and $[OH^-]$.	
7.	Describe indicators as	

	weak acid/base mixtures whose acidic and basic forms have different colors.	
8.	Recognize that pH is a way of describing the [H ₃ O ⁺] of solutions using a logarithmic scale. Given the [H ₃ O ⁺] or pH, calculate the other.	
9.	Identify the endpoint of a titration as the point at which the rate of change of [H ₃ O ⁺] is greatest.	
10.	Given the volume and concentration of known acid (or base) used to titrate a base (or acid), calculate the concentration of the unknown solution.	