I apologize for the spraeling messiness of this packet. It is a combination of 1) things to know 2) unsolved problems 3) solved problems. It is a broad survey meant to be a starting point that jogs your memory.

Review for the June 2014 Chemistry Final Exam

(The exam covers only second semester, from Jan 27 to June 6th)

Disclaimer: Studying this packet is a great start but is not a substitute for actually studying all 80 days of material. Hopefully time spent with this packet will help you find what parts of the semester you need to go back and study in depth, either from your notes or from http://genest.weebly.com

Of the 80 days we have been together this semester, the things in this packet are the ones that came up over and over.

About a third of what you need to know are specific facts. Get these from your notes.

Two thirds of what you need to know are skills. Get these by doing, redoing, and redoing one more time, all of the old homework problems that you learned to solve this semester.

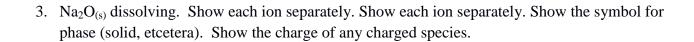
UNIT 10 SOLUTIONS

Solvent Solute cation anion

FORMULAS

Solutions Math equations:

- (1) molarity = moles solute divided by liters of solution
- (2) the dilution equation ($M \times V = M \times V$


Solutions skills:

- (1) If given a words description of a dissolving or a precipitating, students will be able to (SWBAT) write the symbolic letters of a balanced equation AND a particle cartoon
- (2) If given any two data parts of the molarity formula, calculate the missing one.
- (3) If given a list of solid ionic compounds, SWBAT rank the substances according to which gives the most and least particles of solute.
- (4) if given a description of a solution students will be able to identify the solute and the solvent
 - 1. How many pieces will this fall apart into if made into an aqueous solution? (circle your choice)

AlBr ₃ (NH ₄) ₂ CO ₃ Ca(CH ₃ COO) ₂ CH ₃ OH	1?	2?	3?	4?	5?
(NH ₄) ₂ CO ₃	1?	2?	3?	4?	5?
Ca(CH ₃ COO) ₂	1?	2?	3?	4?	5?
CH₃OH	1?	2?	3?	4?	5?

2.	In each blank write I (ionic)	or M (molecular)	to indicate what the	substance is

_____ SO₂

_____+___+

4. When ionic substances such as potassium nitrate are dissolved in water they often make the water colder. This is because heat is (entering / leaving) the ionic substance and heat is (entering / leaving) the water.

For each of the following, Underline compounds that are molecular, circle compounds that are ionic

For each substance below write a dissociation equation (something like " $A_{(s)} \rightarrow B_{(aq)} + C_{(aq)}$ ") to describe that substance dissolving:

(a) LiCl This is <u>\(\sigma\) ionic \(\sigma\) molecular</u> therefore its dissolved particle(s) will have the formula ______

_____ + ____ (don't forget to write solid, liquid, aqueous next to each symbol)

(b) $CH_3OH_{(L)}$ This is $\underline{\square ionic}$ $\underline{\square molecular}$ therefore its dissolved particle(s) will have the formula $\underline{\hspace{1cm}}$

_____ (don't forget to write solid, liquid, aqueous next to each symbol)

(c) LiNO This is <u>\(\pi\) ionic \(\pi\) molecular</u> therefore its dissolved particle(s) will have the formula ______

_____ + ____ (don't forget to write solid, liquid, aqueous next to each symbol)

(d) NaBr_(s) This is <u>\(\sigma\) ionic \(\sigma\) molecular</u> therefore its dissolved particle(s) will have the formula ______

)	+ (don't forget to write solid, liquid, aqueous next to each symbol)
(e)	$C_{12}H_{22}O_{11(s)}$	This is <u>lionic lmolecular</u> therefore its dissolved particle(s) will have the formula
	<i>></i>	+ (don't forget to write solid, liquid, aqueous next to each symbol)

4. Write the correct formula that each compound would have. Remember, the total charge of any substance is **zero charge**

	O^{2-}	OH ⁻	PO ₄ ³⁻
Mg^{2+}			
K ⁺			
NH ₄ ⁺			
·			
Iron(III) ion {look up the symbol on your chart}			

Introduction to Concentration Units

CAeMis+ry: http://genest.weebly.com

Stop in for help every day at lunch and Tues, Weds., &Thurs after school!

After-hours question? Email me at home: eagenest@madison.k12.wi.us

Sample Problem 1

Find the molarity of 100 mL of a solution that contains 0.25 moles of dissolved solute.

Step 1: Convert all volumes to liters

 $100 \text{ mL} \cdot \frac{1 \text{ L}}{1000 \text{ mL}} = 0.1 \text{ L}$ Step 2: Substitute values into the definitional equation

moles = 0.25 moles

0.1 L

1. Find the molarity of 350.mL of a solution that contains 0.0049 moles of NaCl.

Find the molarity of 350 mL of a solution

that contains 0.0049 grams of NaCl

1×Na= 22.99

1xCR= 35.45

Sample Problem 2

Find the molarity of 250 mL of a solution that contains 4 g of dissolved sodium hydroxide (NaOH).

Step 1: Find the GFM

Step 2: Convert all volumes to liters 250 mL 1 L = 0.25 L

Step 3: Substitute values into the correct equation

M = 0.0000 838 mol

ANSWER

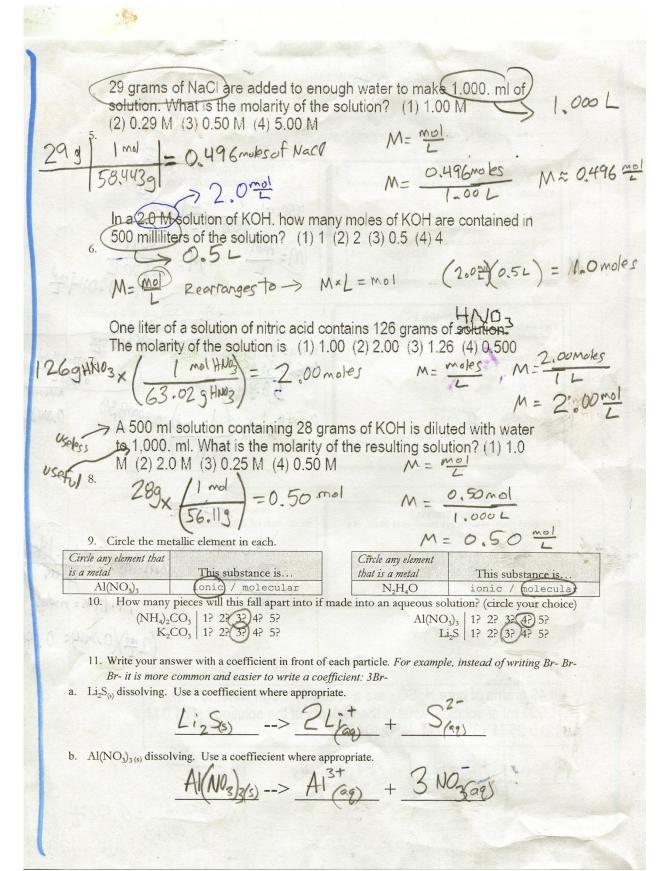
0,000249

Sample Problem 3

How many moles of solute are dissolved in 30 mL of a 2 M solution?

Step 1: Convert all volumes to liters

 $30 \text{ mL} \cdot \frac{1 \text{ L}}{1000 \text{ mL}} = 0.03 \text{ L}$


Step 2: Substitute values into the correct equation moles = $M \times L = (2 \text{ moles/L})(0.03 \text{ L}) = 0.06 \text{ moles}$ How many moles of CH₃Br are dissolved 2 T

in 40. mL of 2 M solution?

0.040 liters

If 49 grams of pure H₂SO₄ are added to enough water to make 1,000 ml of solution, what is the molarity of the solution? (1) 1.0 M (2) 0.25 M (3) 0.50 M (4) 0.10 M

M = 0.50 mol = 0.50 mol

1. Just write the formulas of the Cations and anions

<u>formula</u>	the cation is:	the anion is:
carbonated water (soda)		
	oxygen	nitrogen
lemonade		

2. Take 99 mL of sugar water that is 0.730mol/L. Add 99 mL of water to it. What is the final concentration of the new solution?

3. 1.5 moles of carbon dioxide can make a 4 mol/L solution. What volume should the solution be?

4. A study of dog sweat finds 0.003 moles of potassium ion in 30 milliliters of sweat. What is the concentration?

5. Write the charges of the following ions with the aid of a periodic table:

______ Na ion ______ Zn ion

Na ion ____ Oxygen ion ___ Zn ion

____ Al io

6. How many of the ions in the previous question are "Anions"? ___

7. In the second box, redraw how the first drawing would look if the ion in the middle were "-" instead of "+".

8. In $(NH_4)_2CO_3$ Carbonate is the (cation / anion) and Ammonium is the (cation / anion)

- 9. If you have 1.0 M solutions of the compounds above which would lower the freezing point the most? Which would lower the freezing point the least?
 - a. $Sugar(C_{12}H_{22}O_{11})$
 - b. Sodium chloride
 - c. Aluminum fluoride
 - d. Magnesium bromide

10. Explain why salt is added to water when you are cooking pasta.
11. Explain why you put antifreeze in your car during the winter AND also during the summer.
12. In $FeCO_{3(s)}$ iron is the (cation / anion) and CO_3 is the (cation / anion)
13. The following are all water based solutions. Rank the solutions from coldest freezing point (1) to highest freezing point (4) a 0.5M AuF _{3(aq)}

b. _____ 0.5*M* NO_{2(aq)}

c. _____ pure water
d. _____ 0.5*M* NaCl_(aq)

14. How many grams of SF_4 are contained in 606. mL of a 0.075 M solution?

15. Circle the metallic element in each.

Circle any element that is a metal	This substance is
$Al(OH)_3$	ionic / molecular

Circle any element	/T11 · 1 · ·
that is a metal	This substance is
NH ₄ Br	ionic / molecular

Colligative Properties

CAeMis+ry: http://genest.weebly.com

Stop in for help every day at lunch and Tues, Weds., &Thurs after school!

After-hours question? Email me at home: eagenest@madison.k12.wi.us

Name_____ Period____

Fill in the missing blanks to describe each mixture.
 Remember that the solvent is the thing you have the most of.

the solution is called:	the solute is:	the solvent is:
carbonated water (soda)	C02	ivates
air	oxygen	nitrogen
lemonade	suges, lemonflavor	water

2. Predict the particles that will form in solution

compound:	Gives these pieces if dissolved			
AlCl _{3(aq)}	A1 3+	CI	, CI-	, CI
CH ₃ OH _(aq)		CH 30	14	
Ca (OH) _{2(aq)}	Ca ²⁺	Of	1-	OH-

- 3. When liquids are impure, their freezing points are (lower/higher) than normal.
- 4. When liquids are impure, their boiling points are (lower/higher) than normal.

substance	boiling poin	t [°C] n	aclting	point [°C]
boron	3675		1 2	079
tungsten	5660		3	410
oxygen	-182		607 (\$12)	218

5. If tungsten is made into an alloy by adding copper, what would be a possible boiling point for the alloy?

a. 5500

b. 5660

5700

6. If boron were made into a solution by mixing it with N₂ what would be a possible boiling point for the solution?

a. 3600

b. 3675

c. 3700

7. You have 3.05 grams of aluminum nitrate and want to make a 5L of solution. What concentration could you make?

3.05 g All(NO₃) $_3$ x $_{213019}$ = 0.0143 $_{100}$

formula:

 $M = \frac{\text{moles}}{I}$

M= 0.0143 mol

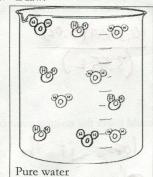
M=0.00286mol

		100
8. What is the molarity		
L of solution?		icient water to prepare 2.75
454 / I mol Nach - o Llowell	Na Cl	The concentration = moles of solute
45g x (58,44 g Noci) = 2.48moll	14000	The units $[M] = \frac{volume\ of\ solution}{[L]}$
A	Ttomula	
fronthe	M = moles	M= 2.48 mol M= 0.962 mol
Periodic toble	L District	
I. of 1 50 M KCl2		are needed to prepare 0.750
M= moles & unknown	moles = (0.5	OM (0.750L)
L D D A	moles=1.	125 moles
restrates to		7
rearranges to moles = M = L	1 125 mol	74.55 grans = 83.9 grans
moles = M · L	X	- 0 J. 1 S
10 7		
grams of potassium hy	droxide must be	
M=(ma) = M.	L moles =	(2.50m)(10.54) r
	malec -	26-25 moles
	96 25ml	56-11 grans - 1473 grans
	X (-	• Me
For each pair of quantit	ties mark < , =,	or >. Koll
Example: The temperature today	e in Madison	The temperature on a hot day on Mars
11. the melting po		The melting point of salty ice
12. The boiling point so so 13. The melting point	olution of NaCl	The boiling point of a 0.200 M solution of NaCl
	olution of NaCl	The melting point of a 0.200 M solution of NaCl
	SKIP	
ONLOW OF MERCHAN	1 M 37	STORY - AA WAS MITTON

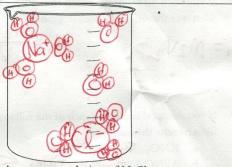
Review for the Test

CheMis+ry: http://genest.weebly.com

Stop in for help every day at lunch and Tues, Weds., &Thurs after school!


After-hours question? Email me at home: eagenest@madison.k12.wi.us

ANSWERS


Period

1. Draw!

In the beaker on the right draw a Na+ and a Cl-ion.

Draw the same number of water molecules as the beaker on the left and what direction each would face.

An aqueous solution of NaClaro

2. If 4.55M hydrochloric acid is diluted from 36.0mL to 90.0mL, what is the new concentration?

3. What is the molarity if 0.65 moles CaCl₂ in 750 mL of solution are mixed?

M= 0.65 mol N= 0.87

4. In NaBr bromide is the (cation / anion) and sodium is the (cation / anion)

substance	boiling point [°C]	melting point [°C]
boron	3675	2079
tungsten	5660	3410
oxygen	-182	-218

- 5. If oxygen is mixed with another gas, what would be a possible melting point for the mixture?

b. -182°C

c. -180°C

f. 5670

- 6. If tungsten were made into a solution by mixing it with iron what would be a possible boiling point for the solution?
 - d. 5650

e. 5660

7. If you took 455 mL of 0.110M solution and diluted it to 790. mL, what would the new concentration be?
$M_1V_1 = M_2$ $M_2V_1 = M_2$
(790mL)
8. If you took 3.55L of unknown strength solution and diluted it to 5.0L that had a concentration of 0.250M, what was the original concentration?
what was the original concentration? $M_1 = M_2 V_2 \qquad M_2 = \frac{(0.250 \text{ M})(5.01)}{(3.55 \text{ L})}$
$M_{i} = 0$
9. If you dumped one mole each of the following compounds, which would lower the melting point of
a. KNO3 two particles answer: this lowers it the most b. Al(NO3)3 four particles
10. In FeCO _{3(s)} iron is the (dation / anion) and CO ₃ is the (cation / anion)
11. The following are all water based solutions. Rank the solutions from coldest freezing point (1) to highest
freezing point (5)
tie 2 0.5M KNO _{3(aq)} two particles of solute b. 1 0.5M Al(NO ₃) _{3(aq)} four solute particles c. 5 pure water NONE d. 2 0.5M NaBr _(aq) two solute particles e. 4 0.5M CH ₃ OH _(aq) one solute particle 12 How many grams of amongium chlorida are contained to 200 ml of a 0.075 He had a contained to 200 ml of a 0.075 He h
tie 6 Dura water 1000
d. 2 0.5M NaBr., two solute particles
e. 4 0.5M CH3OH(a) one solute particle
12. How many grams of ammonium chloride are contained in 300. ml of a 0.875 M solution?
50.300 L [0.263 AZ59]
N=(mol) = M×L mol=(0.875M)(0.300L) = 0.263 m/es 0.263 m/es
(0.500L) = 0.263 miles
13. How many moles of nitrate ions are in 50.0 mL of a 1.9850 M magnesium nitrate solution?
₩ 0.0500 L
(200)
M= $M \circ l = M \times L$ Mol = $(.9850 \text{M})(0.0500 \text{L})$ Determine the molarity of the following solutions. Show your work and remember that the unit on your
0.1985m
mol = 0.09925 moles Mg(NO3)2 \ NO
Determine the molarity of the following solutions. Show your work and remember that the unit on your answer must be in moles/Liter = M.
14. What is the molarity if 3.00 moles of C ₆ H ₁₂ O ₆ dissolved to make 2.0 liters of solution?
$M = \frac{\text{moles}}{L}$ $M = \frac{(3.00 \text{ mol})}{(2.0 \text{ L})}$ $M = 1.5 \text{ M}$

: 10