Review for the June 2014 Chemistry Final Exam

(The exam covers only second semester, from Jan 27 to June 6th)

Disclaimer: Studying this packet is a great start but is not a substitute for actually studying all $\mathbf{8 0}$ days of material. Hopefully time spent with this packet will help you find what parts of the semester you need to go back and study in depth, either from your notes or from http://genest.weebly.com

Of the $\mathbf{8 0}$ days we have been together this semester, the things in this packet are the ones that came up over and over.

About a third of what you need to know are specific facts. Get these from your notes.

Two thirds of what you need to know are skills. Get these by doing, redoing, and redoing one more time, all of the old homework problems that you learned to solve this semester.

1. acid
2. base
3. conjugate acid
4. hydrogen-ion acceptor
5. hydrogen-ion donator
6. hydronium ion
7. hydroxide ion
8. pH
9. strong, weak acid
10. strong, weak base
11. end point
12. equivalence point
13. neutralization reaction ("Acid plus base makes water plus salt")
14. titration
15. indicator colors
16. $[\mathrm{H}+][\mathrm{OH}-]=1 \times 10-14$
17. $\mathrm{pH}=-\log [\mathrm{H})$
18. $\mathrm{pOH}=-\log [\mathrm{OH}]$
19. $\mathrm{pH}+\mathrm{pOH}=14$
20. If the concentration of $[\mathrm{H}+]$ is 2.33×10^{-9}, calculate the concentration of $[\mathrm{OH}-]$
21. Fill in the blanks below to describe a neutralization reaction between HF and KOH .
\qquad
\qquad $+$ \qquad
22. Which compound did you just write that is considered a salt?

Answer: \qquad
4. What is the pH of a solution that has $[\mathrm{H}+]=4.28 \times 10^{-12}$?

1. This is
(a) an acid
(b) a base
(c) neither

2. This is
(a) a strong electrolyte
(b) a weak electrolyte
3. This is
(a) an acid
(b) a base
(c) neither

4. This is
(a) a strong electrolyte
(b) a weak electrolyte
5. This is
(a) an acid
(b) a base
(c) neither

6. This is
(a) a strong electrolyte
(b) a weak electrolyte
7. What is the mathematical definition of pH (give the formula)?
8. What two concentrations always give 1×10^{-14} when multiplied together?
9. If the concentration of [$\mathrm{H}+]$ is 2.33×10^{-9}, calculate the concentration of [OH-]

Start by writing an appropriate formula. Circle the unknown...

8. If the concentration of $[\mathrm{H}+]$ is 7.30×10^{-4}, calculate the concentration of $[\mathrm{OH}-]$
9. If the concentration of $[\mathrm{H}+]$ is 7.30×10^{-4}, calculate the pH
10. If the concentration of $[\mathrm{H}+]$ is 2.33×10^{-9}, calculate the pH
11. If the concentration of [OH-] is 2.33×10^{-9}, find the $[\mathrm{H}+]$ and then calculate the pH (using your formula from \#2 and \#1)
11. Calculate the pH of a solution if its $\left[\mathrm{OH}^{-}\right]=0.000700 \mathrm{M}$
12. Calculate the pH of a 0.025 M solution of $[\mathrm{H}+]$
13. Circle the one compound that would turn litmus paper red.
(a) pure water
(d) $\quad 0.10 \mathrm{M} \mathrm{NaOH}_{(\mathrm{aq})}$
(b) $0.10 \mathrm{M} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6(\text { aq })}$
(e) $\quad 0.10 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}$
(c) $\quad 0.10 \mathrm{M} \mathrm{NaCl}_{(\text {aq })}$
14. Circle the one compound that is neither an acid nor a base.
(a) $0.10 \mathrm{M} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6 \text { (aq) }}$
(c) $\quad 0.10 \mathrm{M} \mathrm{NaOH}_{(a q)}$
(b) $\quad 0.10 \mathrm{M} \mathrm{H}_{2} \mathrm{CO}_{3(\mathrm{aq})}$
(d) $\quad 0.10 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}$
15. Of the following compounds, circle ONE OR MORE that are electrolytes
(a) $0.10 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2(\text { aq })}$
(d) $\quad 0.10 \mathrm{M} \mathrm{NaOH}_{(\mathrm{aq})}$
(b) $0.10 \mathrm{M} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6(\text { aq })}$
(e) $\quad 0.10 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}$
(c) $\quad 0.10 \mathrm{M} \mathrm{NaCl}_{(\text {aq })}$
16. Circle the compound that would increase the concentration of hydronium in solution.
(a) pure water
(b) $\quad 0.10 \mathrm{M} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6(\text { aq })}$
(c) $\quad 0.10 \mathrm{M} \mathrm{NaCl}_{(\mathrm{aq})}$
(d) $\quad 0.10 \mathrm{M} \mathrm{NH}_{3(\mathrm{aq})}$
(e) $\quad 0.10 \mathrm{M} \mathrm{HNO}_{3(a q)}$
17. The formula for water is $\mathrm{H}_{2} \mathrm{O}$. What is the formula for hydronium? (include the correct charge)

Conjugate Acids + Indicators

EHIS CA3mIs+ry

$\mathscr{M r}_{\text {r. Geest }}$

Name ANSWERS AnSWERS Date ANSWERS ANSWERS

1. In each case below for any substance on the LEFT side of the arrow, mark it as follows: circle any acid, underline any base, cross out anything that is neither an acid nor a base. (If you are stuck, look Rt he example on Question \#10)

2. What color is phenolphthalein in very basic solution?

Common Acid-Base Indicators

Indicator	Approximate pr Range for Color Change	Color Change
methyl orange	$3.1-4.4$	red to yellow
bromthymol blue	$6.0-7.6$	yellow to blue
phenolphthale in	$8-9$	colorless to pink
litmus	$4.5-5.3$	red to blue
bromeresol green	$3.5-5.4$	yellow to blue
thymol blue	$8.0-9.6$	yellow to blue V

3. A sample of a solution with a pH of 10 is tested separately with phenolphthalein and litmus indicator. The colors of the indicators are as follows (choose only one letter)
a. litmus is blue; phenolphthalein is pink?
b. litmus is red; phenolphthalein is pink
c. litmus is blue; phenolphthalein is colorless
d. litmus is red; phenolphthalein is colorless
4. What color is phenolphtalein in a beaker full of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$? ACID, so pH less than 7
so it should be colorless
5. A blue solution containing an acid-base indicator was tested with a pH meter and found to have a pH of 5.5 . Which of the indicators shown on the table above could be this indicator? WO BLUE AT THIS PH
BROMERCRESOL GREEN
6. A solution was yellow in bromthymol blue and blue in bromcresol green. According to the table here, what could be the pH of this solution? Less than 6.0, more than 5.4.

$$
\text { so pH should be between } 5,4 \text { and } 6.0
$$

7. Acid was added to a solution containing an indicator until the solution turned from blue to yellow. Which of the following would be the most acidic?
a. a yellow solution containing bromthymol blue
b. a yellow solution containing bromcresol green
c. a yellow solution containing thymol blue $3 \mathrm{HCH}_{3} \mathrm{Al}(\mathrm{OH})_{3} \rightarrow \mathrm{Al}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{3}+3 \mathrm{HOH}$
8. Complete and balance the neutralization reaction for
a. HI neutralizing $\mathrm{Mg}(\mathrm{OH})_{2}$

HI
$+\mathrm{Mg}_{\mathrm{g}}(\mathrm{OH})_{2} \rightarrow 2 \mathrm{HOH}+\mathrm{Mg}_{\mathrm{I}}$
9. If NH_{3} is a base, what is its conjugate acid?

$$
\mathrm{NH}_{4}^{+}
$$

b. $\mathrm{Al}(\mathrm{OH})_{3}$ is mixed with $\mathrm{HCH}_{3} \mathrm{COO}$

10. Using this diagram as a model, draw a complete reaction for each pair below. Label them with the arrows and all of the words shown in this diagram
$\mathrm{Ca}(\mathrm{OH}) 2$ reacting with HCHOO

11. If a beaker contains 0.00000593 moles of $\mathrm{H}+$ ions, in 30.0 L of water,
a. What is the $[\mathrm{H}+]$?

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]=\frac{\text { moles } \mathrm{Ht}^{2}}{\text { Liters } \mathrm{HP}}} \\
& {\left[\mathrm{H}^{+}\right]=\frac{0.00000593 \mathrm{~mol}}{30.0 \mathrm{~L}}}
\end{aligned}
$$

$$
[\mathrm{H}]=1.98 \times 10^{-7} \mathrm{M}
$$

b. what is the pH ?

$$
\begin{gathered}
p H=-\log \left[1,98 \times 10^{-7} \mathrm{~m}\right] \\
P H=6,70
\end{gathered}
$$

12. If a beaker contains $4.89 \times 10^{14} \mathrm{H}+$ ions, in 0.790 liters of water,
a. What is the $[\mathrm{H}+]$?

$$
\text { eoncetrotion }=\frac{4.89018 \text { males }}{0.790 \mathrm{~L}}
$$

h. what ie thanes
12. If a beaker contains $4.89 \times 10^{14} \mathrm{H}+$ ions, in 0.790 liters of water,

$$
4.89 \times 10^{14} \text { ions } \times \frac{1 \text { mole ions }}{6.02 \times 10^{23} \text { ions }}=8.12 \times 10^{-10} \text { moles }
$$

$$
\begin{aligned}
& \text { cancentiction }=\frac{8.12 \times 10^{-10} \text { moles }}{0.790 \text { liters }} \\
& \text { concentration }=1.03 \times 10^{-9} 1
\end{aligned}
$$

b. what is the pH ?

$$
P H=-\log \left[H^{+}\right] \quad p H=-\log \left[1.03 \times 10^{-9}\right] \quad p H=8.99
$$

c. find the number of $\mathrm{H}+$ ions that would be in a $690 . \mathrm{mL}$ (units!) volume of a solution that had the same molarity you found in answer A .

$$
\text { concentration }=\frac{\text { moles }}{\text { volume }}
$$

$$
\begin{aligned}
& \text { Moles }=(\text { conc })(\text { volume }) \\
& \text { moles }=\left(1,03 \times 10^{-9} \mathrm{M}\right)(0,690 \mathrm{~L})
\end{aligned}
$$

13. In each case below for any substance on the LEFT side of the arrow, mark it as follows: circle any acid, moles $=7 .\|x\|$ underline any base, cross out anything that is neither an acid nor a base.
$\frac{\mathrm{SO}_{4}{ }^{2-}}{\frac{\mathrm{H}_{3} \mathrm{O}^{+}}{\text {base }} \rightarrow+\mathrm{HSO}_{4}^{-}}+\mathrm{H}_{2} \mathrm{O}$

$$
\text { a. } \mathrm{NH}_{4}^{+}+\frac{\mathrm{H}_{2} \mathrm{PO}_{4}^{-}}{\text {acid }} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{NH}_{3}
$$

Review:
4. Calculate the hydrogen ion concentration and the hydroxide ion concentration for the following pH values.
a. $\mathrm{pH}=1.04$ $0.091 \frac{\mathrm{~mol}}{\mathrm{~L}}$
$1.099 \times 10^{-13} \frac{\mathrm{md}}{\mathrm{L}}$
b. $\mathrm{pH}=13.1 \quad 7.94 \times 10^{-14} \frac{\mathrm{mal}}{\mathrm{L}} \quad 0.126 \frac{\mathrm{~mol}}{\mathrm{~L}}$
5. What volume of 0.200 M hydrochloric acid solution is needed to neutralize 25.0 mL of 0.150 M sodium hydroxide solution?
15. Write a balanced chemical equation for each reaction

$$
\begin{aligned}
& \mathrm{Mg}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{MgSO}_{4}+\mathrm{H}_{2} \\
& \mathrm{H}_{3} \mathrm{PO}_{4}+2 \mathrm{NaOH} \rightarrow 3 \mathrm{HOH}+\mathrm{Na}_{3} \mathrm{PO}_{4}
\end{aligned}
$$

22. What would be the $\mathbf{p H}$ of each of the following:
a) 0.0010 M HCl
b) $0.0010 \mathrm{M} \mathrm{HNO}_{3}$
c) 0.010 M NaOH
d) pure water

$$
p H=3
$$

$$
P H=3
$$

$$
\begin{aligned}
& p H=3 \\
& p H=12<\text { because } \frac{1.0 \times 10^{-14}}{0.01}=1 \times 10^{-12}
\end{aligned}
$$

f) $0.000000000001 \mathrm{~m} \mathbf{~ H C I} \quad \begin{aligned} & \mathrm{pH}=7 \\ & p H=12\end{aligned}$

Metal with Acid
Remembering that Acid $+\underline{\text { Metal }} \rightarrow \underline{\text { hydrogen gas }}+\underline{\text { salt, fill in the missing substances for each reaction }}$ below

$$
\begin{aligned}
& \text { 6. } \mathrm{HBr}+\mathrm{Na} \rightarrow \frac{\mathrm{H}_{2}}{\text { 7. } \mathrm{HNO}_{3}+\mathrm{Mg} \rightarrow \frac{\mathrm{NaBr}}{\mathrm{H}_{2}}+\frac{\mathrm{Mg}_{2}\left(\mathrm{NO}_{3}\right)_{2}}{\left.\mathrm{Ca}_{3} \mathrm{PO}_{4}\right)_{2}}} \begin{array}{l}
\text { 8. } \mathrm{H}_{3} \mathrm{PO}_{4}+? \mathrm{Ca} \rightarrow 3 \mathrm{H}_{2}
\end{array} \text {. }
\end{aligned}
$$

9. We have three equations which we have been using in this chapter. :

Write the equation you have memorized that describes what number you get when you multiply the molarity of $\mathrm{H}+$ by the molarity of $\mathrm{OH}-$	Write the equation you have memorized that describes how $\mathrm{H}+$ molarity is related to pH	Write the equation that you have been using since March to relate moles of solute, volume of solution, and molarity of a solution.
10. If a solution contains 4.115 moles of HNO_{3} dissolved to make 788 mL of solution, what is the molarity?		

$$
\begin{aligned}
& \text { Concentration }=\frac{\text { moles }}{\text { Volume }} \quad \text { concentration }=\frac{4.115 \text { moles }}{0.788 \mathrm{~L}} \\
& \text { Concentration }=5.22 \mathrm{M}
\end{aligned}
$$

11. If 335 mL of a 0.20 M solution of $\mathrm{Ca}(\mathrm{OH})_{2}$ is required to titrate 450.0 mL of HBr , what is the concentration of the acid solution?
12. If 3.59 mL of a 0.040 M solution of $\mathrm{Ca}(\mathrm{OH})_{2}$ is required to titrate 840.0 mL of HBr , what is the concentration of the acid solution?
