Review for the June 2014 Chemistry Final Exam

(The exam covers only second semester, from Jan 27 to June 6th)

Disclaimer: Studying this packet is a great start but is not a substitute for actually studying all $\mathbf{8 0}$ days of material. Hopefully time spent with this packet will help you find what parts of the semester you need to go back and study in depth, either from your notes or from http://genest.weebly.com

Of the $\mathbf{8 0}$ days we have been together this semester, the things in this packet are the ones that came up over and over.

About a third of what you need to know are specific facts. Get these from your notes.

Two thirds of what you need to know are skills. Get these by doing, redoing, and redoing one more time, all of the old homework problems that you learned to solve this semester.

UNIT 7 PHASES,

 PHASE DIAGRAMS, VAPOR PRESSURE

For full credit: 1) you must work where your partner is working
2) Be in your regular desk 6 minutes before the bell for credit check.

1. Write the standard pressure in \qquad kPa \qquad mmHg

Using the chart at right, answer each:
2. If diethyl ether in this room had a vapor pressure of 600 mmHg would it be boiling?
3. How high must the vapor pressure of a substance be at East High School for that substance to boil?
4. Will the boiling point of a substance be higher on top of a mountain or in Madison?

5. Fill in the empty boxes using the vapor pressure from the graph above.

substance	vapor pressure	the ambient pressure	Is the substance boiling?	temperature
ethyl alcohol		500 mmHg	yes	

diethyl ether	400 mmHg	400 mmHg	yes	
	600 mmHg	760 mmHg	no	$74^{\circ} \mathrm{C}$
water	200 mmHg		yes	$64^{\circ} \mathrm{C}$

6. Draw your own heating curve for aluminum, knowing that it melts at $660^{\circ} \mathrm{C}$ and vaporizes at $2467{ }^{\circ} \mathrm{C}$ Label the x -axis time and label the y -axis temperature.
7. As temperature rises what happens to vapor pressure?
8. The temperature at which all motion stops is \qquad K or \qquad ${ }^{\circ} \mathrm{C}$
9. If the absolute temperature is increased four times higher what happens to the kinetic energy?
10. Explain one way each of the following could happen.
a. Water boils at a temperature above $100^{\circ} \mathrm{C}$.
b. Water boils at a temperature below $100^{\circ} \mathrm{C}$.
11. Show the work need to convert 50 mm Hg to kPa .

11. The graph below is a phase diagram for substance. Label the following parts on the graph: sublimation line, normal boiling point, vapor/gas, liquid, solid, triple point, and critical point.	$\begin{array}{\|l\|} \hline P \\ r \\ r \\ e \\ e \\ e \\ s \\ s \\ s \\ u \\ u \\ r \\ e \\ e \end{array}$	

The normal melting and boiling points of O_{2} are $-218^{\circ} \mathrm{C}$ and $-183^{\circ} \mathrm{C}$, respectively. Its triple point is at $-219^{\circ} \mathrm{C}$ and 1.14 torr, and its critical point is at $-119^{\circ} \mathrm{C}$ and 49.8 atm . (a) Sketch the phase diagram for O_{2}, showing the four points given and indicating the area in which each phase is stable. (b) $\mathrm{Will}_{2}(s)$ float on $\mathrm{O}_{2}(l)$? Explain. (c) As it is heated, will solid O_{2} sublime or melt under a pressure of 1 atm ?
12.
13. Diamond and graphite are both made out of carbon. Explain how it is possible that one substance is one of the hardest things on Earth while the other breaks on us constantly.

1. Write the definition of energy given in class:
2. When kinetic energy of a gas doubles, what other measurement also exactly doubles?
3. How many of the molecules in this picture are compounds?
a. 0
b. 2
c. 15

d. 30
4. Convert 44.1 atm to mmHg
(Recall that the following are all equal:
$760 \mathrm{mmHg}=101 \mathrm{kPa}=1.00 \mathrm{~atm}$)
5. States of matter can be changed. What is needed to make this possible?
6. Write the definition of energy given in class:
7. When kinetic energy of a gas doubles, what other
measurement also exactly doubles?
8. How many of the molecules in this picture are compounds?
$\begin{array}{ll}\text { a. } & 3 \\ \text { b. } & 6\end{array}$
b. 6
d. 15

(I)

9. Convert 67.5 kilopascals to atm
(Recall that the following are all equal:
$760 \mathrm{mmHg}=101 \mathrm{kPa}=1.00 \mathrm{~atm}$)
10. Use this drawing or a similar one of your own to explain how perspiration (sweating) cools a person.

11. Consider these liquids at room temperature:

12. Label the three boxes below as " 60 degrees C"

Draw a manometer in each box. Instead of water, label the liquid in each as either degree ethanol, water, or diethyl ether. Draw how many particles would be vapor. Move the Hg to show your prediction for how far it would be pushed to the right.

3. Graph this data. Label the X -Axis temperature. Number it from 0 to 100. Label the Y Axis vapor pressure. Number it from 0 to 900 . Draw dots with circles for data points. Connect your data points with a line.

temperature $\left.{ }^{\circ} \mathrm{C}\right]$	vapor pressure [torr]
30	20
50	110
60	200
70	300
80	400
90	600
100	800

The graph you made above shows that as temperature decreases, the vapor
pressure of a substance will become (lower / higher). This makes sense because as temperature decreases, the kinetic energy of the liquid (decreases / increases) and therefore the amount of liquid changing to vapor will be (less / more)

Solid Phases
CheMistry: http://genest. weebly.com
Stop in for help every day at lunch and Tues, Weds., \&Thurs after school!
After-hours question? Email me at home: eagenest@madison.k12.wi.us

1. Write the standard temperature in 0 $273-1205^{\circ} \mathrm{C}$
2 2
2. Indicating atoms of sulfur by circles with an S inside, sketch two different allotropes of sulfur in the space below:

substance	melting point $\left.{ }^{\circ}{ }^{\circ} \mathrm{C}\right]^{*}$	boiling point $\left[{ }^{\circ} \mathrm{C}\right]^{*}$
chlorine $\left(\mathrm{Cl}_{2}\right)$	-102	-34
bromine $\left(\mathrm{Br}_{2}\right)$	-7.2	59
iodine $\left(\mathrm{I}_{2}\right)$	114	$* *$
water	0	$\mathbf{O O}$

*measured at standard pressure
${ }^{* *}$ sublimes instead of vaporizing
Use the table above to answer the following questions
4. Scientists working in Antarctica frequently encounter temperatures of 313 kelvins. At this temperature predict the phase of each substance:
a. chlorine would be $g d s$
b. bromine would be Liquid

$$
313-273=40^{\circ} \mathrm{C}
$$

c. iodine would be SOLID
5. Add a line in the table above for $\mathrm{H}_{2} \mathrm{O}$. Fill in the numbers.
6. Calculate the melting point of bromine to kelvins: \qquad

$$
-7.2+273=265.8 \text { kelvins }
$$

7. In the square below, sketch a crude heating curve for heating bromine from $-100^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. Label your axes time [minutes] and temperature $\left[{ }^{\circ} \mathrm{C}\right]$. Clearly write a number for the temperature of melting and boiling on the Y -axis

8. Sketch an example of an amorphous substance, from class notes, using circles as atoms.

$$
0.00000000^{000000000} \text { examples: plastic } \text { glass }
$$

(a)
solidtogas
it sublimed
(b)

