Review for the June 2014 Chemistry Final Exam

(The exam covers only second semester, from Jan 27 to June 6th)

Disclaimer: Studying this packet is a great start but is not a substitute for actually studying all $\mathbf{8 0}$ days of material. Hopefully time spent with this packet will help you find what parts of the semester you need to go back and study in depth, either from your notes or from http://genest.weebly.com

Of the $\mathbf{8 0}$ days we have been together this semester, the things in this packet are the ones that came up over and over.

About a third of what you need to know are specific facts. Get these from your notes.

Two thirds of what you need to know are skills. Get these by doing, redoing, and redoing one more time, all of the old homework problems that you learned to solve this semester.

UNIT 9 JOULES, HEAT CAPACITY, STANDARD HEAT
 OF FORMATION

a. Calorie
b. Calorimeter
c. Calorimetry
d. Chemical potential energy
e. Endothermic process
f. Energy
g. Enthalpy
h. Exothermic process
i. Heat
j. Heat capacity
k. Heat of combustion
I. Heat of reaction
m. Joule
n. Law of conservation of energy
o. Specific heat
p. Standard heat of formation
q. Surroundings
r. System
a. Thermochemical equation
i. $A+B->C+44 J$
ii. $A+B->C \quad \Delta H=-44 J$
b. 1 Calorie $=1000$ calories $=1 \mathrm{kcal}$
c. $1 \mathrm{~J}=1 \mathrm{cal}$
d. $\mathrm{q}=\mathrm{mc} \Delta \mathrm{T}$

Recall: 4.184 joules $=1.000$ calorie $1000 \mathrm{~J}=1 \mathrm{~kJ}$

1. Touching a test tube that contains an endothermic reaction your hand will feel (hot / cold) We would describe the change to your hand as (exothermic / endothermic).
2. The system is underlined. For a pile of paper that is set on fire,
a. $\Delta \mathrm{H}=$ zero
b. $\Delta \mathrm{H}=\mathrm{a}$ positive number
c. $\Delta \mathrm{H}=$ a negative number
3. If you combine two solutions in a test tube and the test tube feels hot to your hand, the reaction was definitely
a. endothermic
b. exothermic
4. Which represents the smallest amount of energy:
a. 1 calorie
b. 1 Calorie
c. 1 joule
5. If a hot lump of iron is dropped into maple syrup, complete the following description by writing the word HEAT into only one of the blank spaces. Leave the other space blank.
cold syrup + \qquad -> hot syrup + \qquad
6. Calculate the number of joules that would be given off by burning 10.0 grams of ammonia. Assume that burning 2.5 grams of ammonia gas gives off 820 calories of heat.
7. Convert 5.051 calories to kilojoules. Show work:
8. When 2 moles of solid calcium combines with 1 mole of fluorine gas, 2 mol of solid calcium fluoride (CaF2) is formed and 843 kJ of heat is released. Write the thermochemical equation for this combustion reaction.
9. Indicate whether each item describes potential or kinetic energy:
a. The energy in a cell phone battery
b. A daredevil skiing backwards over a jump
10. Which of these can be detected by the senses or by instruments? (circle only one choice)
a. both heat and temperature
b. temperature only
c. heat only
d. neither heat nor temperature
11. Which pattern is true for heat capacity of materials?
a. the heat capacities (the "C") of metals and water are about equal
b. water has a heat capacity much higher than metals
c. water has a heat capacity much lower than metals
12. A burning match releases 330 . calories. Calculate the energy released by 5 matches in calories
13. In the formula $\mathrm{Q}=(\mathrm{m})(\mathrm{C})(\Delta \mathrm{T})$ tell one unit that could be used to measure each variable.
a. a unit for ΔT could be \qquad
b. a unit for C could be \qquad
c. a unit for Q could be \qquad
a unit for m could be \qquad

Answered
'

2. Write just the reaction that describes forming each compound from its elements in their standard states:
a. $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{L})} 2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{L})}$
b. $\mathrm{CaCO}_{3(\mathrm{~s})}$ (the standard state of metals is a single atom, solid. For carbon, a single atom,

3. Indicate whether each item describes potential or kinetic energy:
a. Water at the top of a waterfall POTENTIAL ENERGY
b. Kicking a ball KINETIC ENECY
c. The energy in a lump of coal POTENTIAL ENERGU
d. A skier at the top of a hill POTENTIAL ENE
4. Indicate whether each item describes potential or kinetic energy:
a. The energy in your food Potential
b. A tightly wound spring potential
c. An earthquake K noetic
d. A car speeding down the freeway Kinetic

Units of Energy Conversions
5. A burning match releases 1100 J . Convert the energy released by 20 matches to the following energy units:
a. Kilojoules

$$
20 \text { matches } \times\left(\frac{1100}{1 \quad \mathrm{~J}} \mathrm{~m} / \frac{1 \mathrm{~kJ} \text { J es }}{1000 \mathrm{~J}}\right)=22 \mathrm{~kJ}
$$

b. Calories

$$
20 \text { matches } \times\left(\frac{1100 \mathrm{~J}}{1 \text { match }}\right)\left(\frac{1 \mathrm{cal}}{4.184 \mathrm{~J}}\right) \times\left(\frac{1 \mathrm{Cal}}{1000 \mathrm{cal}}\right)=5.3 \mathrm{Ca}_{\text {Reactions }}
$$

Energy in Chemical Reactions
6. In exothermic reactions, is the energy of the products less or greater than that of the reactants?

7. Classify the following as exothermic or endothermic:

a. 550 kJ is released

ExOTHERMiC
b. The energy level of the products is higher than that of the reactants. ENDOTHERM K
c. The metabolism of glucose in the body provides energy. EXOTHEERM, C
d. The energy level of the products is lower than that of the reactants. EXOTHERMS C
e. 125 kJ is absorbed. END OTHERMI C
8. Classify the following as exothermic or endothermic reaction and give $\Delta \mathrm{H}$ for each:
a. Gas burning in a Bunsen burner: $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+890 \mathrm{~kJ}$ EXOTHERMiC
b. Dehydrating limestone: $\mathrm{Ca}(\mathrm{OH})_{2}+65.3 \mathrm{~kJ} \rightarrow \mathrm{CaO}+\mathrm{H}_{2} \mathrm{O}$ ENDOTHERMK
c. Formation of aluminum oxide and iron from aluminum and iron(III)oxide: Ex the MIC

区. $2 \mathrm{Al}+\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Fe}+850 \mathrm{~kJ}$
e. Combustion of propane: $\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}+2200 \mathrm{~kJ}$ EXvJHERMIC
f. Formation of table salt: $2 \mathrm{Na}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NaCl}+2 \mathrm{H}_{2} \mathrm{O}+819 \mathrm{~kJ}$ Ex of HERM)
g. Decomposition of phosphorous pentachloride: $\mathrm{PCl}_{5}+67 \mathrm{~kJ} \rightarrow \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$ ENDOTHERM, C
9. In an endothermic reaction, is the energy of the products less than or greater than that of the reactants? greater
10. The equation for the formation of silicon tetrachloride from silicon and chlorine is

$$
\mathrm{Si}+2 \mathrm{Cl}_{2} \rightarrow \mathrm{SiCl}_{4} \quad \Delta \mathrm{H}=-657 \mathrm{~kJ}
$$

How many kilojoules are released when 125 g of Cl_{2} reacts with silicon?

$$
125 \mathrm{~g}\left(1_{2} \times\left(\frac{1}{70.90 \mathrm{gol}^{\mathrm{c} / 2}}\right) \times\left(\frac{-657 \mathrm{kJJ}}{2 \mathrm{~mol} \mathrm{~m}_{2}}\right)=579 \mathrm{~kJ}\right.
$$

Heat of formation
Using the table on p. 316 of your textbook write just the ΔH term for each .
11. Formation of $\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}$ from its elements in their standard states.

$$
\Delta H=-822.1 \mathrm{~kJ} / \mathrm{mol}
$$

12. Formation of $\mathrm{Br}_{2(L)}$ from its elements in their standard states.

$$
\Delta \mathrm{H}=0
$$

13. Write just the reaction that describes forming each compound from its elements in their standard states:
a. $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{L})} 2 \mathrm{H}_{2(\mathrm{~g})} \times \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(2)}$
b. $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} 2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
14. Now put together your skills from the previous two questions. For each substance, write the $\Delta \mathrm{H}$ term for each and the reaction that describes forming each compound from its elements in their standard states (p .316 has a helpful table).
a. $\mathrm{SO}_{2(\mathrm{~g})}$
$\Delta \mathrm{H}=$
b. $\mathrm{NO}_{2(\mathrm{~g})}$
$\mathrm{NO}_{2(\mathrm{~g})}+33.85$ reaction
$\Delta \mathrm{H}=+3$
c. $\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}-822.1$ (g)
$\Delta \mathrm{H}=\underline{ }$-822.1 reaction:
d. $\mathrm{N}_{2(\mathrm{~g})}$
$\Delta \mathrm{H}=$ \qquad reaction:

Table 11.4

		Heats of Combustion at $\mathbf{2 5 ~}^{\circ} \mathrm{C}$
Substance	Formula	$\Delta \boldsymbol{H}(\mathbf{k J} / \mathbf{m o l})$
Hydrogen	$\mathrm{H}_{2}(g)$	-286
Carbon	$\mathrm{C}(s)$, graphite	-394
Carbon monoxide	$\mathrm{CO}(g)$	-283
Methane	$\mathrm{CH}_{4}(g)$	-890
Methanol	$\mathrm{CH}_{3} \mathrm{OH}(I)$	-726
Acetylene	$\mathrm{C}_{2} \mathrm{H}_{2}(g)$	-1300
Ethanol	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(I)$	-1368
Propane	$\mathrm{C}_{3} \mathrm{H}_{8}(g)$	-2220
Benzene	$\mathrm{C}_{6} \mathrm{H}_{6}(I)$	-3268
Glucose	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(s)$	-2808
Octane	$\mathrm{C}_{8} \mathrm{H}_{18}(/)$	-5471
Sucrose	$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(s)$	-5645

Table II. 5

Heats of Physical Change					
Substance	Formula	Freezing point (K)	$\Delta \boldsymbol{H}_{\text {fus }}$ (kJ/mol)	Boiling point (K)	$\Delta H_{\text {vap }}$ (kJ/mol)
Acetone	$\mathrm{CH}_{3} \mathrm{COCH}_{3}$	177.8	5.72	329.4	29.1
Ammonia	NH_{3}	195.3	5.65	239.7	23.4
Argon	Ar	83.8	1.2	87.3	6.5
Benzene	$\mathrm{C}_{6} \mathrm{H}_{6}$	278.7	9.87	353.3	30.8
Ethanol	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	158.7	4.60	351.5	43.5
Helium	He	3.5	0.02	4.22	0.08
Hydrogen	H_{2}	14.0	0.12	20.3	0.90
Methane	CH_{4}	90.7	0.94	111.7	8.2
Methanol	$\mathrm{CH}_{3} \mathrm{OH}$	175.5	3.16	337.2	35.3
Neon	Ne	24.5	0.33	27.1	1.76
Nitrogen	N_{2}	63.3	0.72	77.4	5.58
Oxygen	O_{2}	54.8	0.44	90.2	6.82
Water	$\mathrm{H}_{2} \mathrm{O}$	273.2	6.01	373.2	40.7

Table Il. 6

Standard Heats of Formation ($\Delta H_{1}{ }^{\circ}$) at $25^{\circ} \mathrm{C}$ and 101.3 kPa					
Substance	$\begin{gathered} \Delta H_{i}^{0} \\ (\mathbf{k J} / \mathbf{m o l}) \end{gathered}$	Substance	$\begin{gathered} \Delta H_{i}^{0} \\ (\mathrm{~kJ} / \mathrm{mol}) \end{gathered}$	Substance	$\begin{gathered} \Delta H_{\mathrm{o}}^{0} \\ (\mathbf{k J} / \mathrm{mol}) \end{gathered}$
$\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$	-1676.0	$\mathrm{Fe}(s)$	0.0	NO(g)	90.37
$\mathrm{Br}_{2}(\mathrm{~g})$	30.91	$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$	-822.1	$\mathrm{NO}_{2}(\mathrm{~g})$	33.85
$\mathrm{Br}_{2}(\mathrm{l})$	0.0	$\mathrm{H}_{2}(\mathrm{~g})$	0.0	$\mathrm{Na}_{2} \mathrm{CO}_{3}(s)$	-1131.1
$\mathrm{C}(\mathrm{s}$, diamond)	1.9	$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	-241.8	$\mathrm{NaCl}(\mathrm{s})$	-411.2
C(s, graphite)	0.0	$\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$	-285.8	$\mathrm{O}_{2}(\mathrm{~g})$	0.0
$\mathrm{CH}_{4}(\mathrm{~g})$	-74.86	$\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l})$	-187.8	$\mathrm{O}_{3}(\mathrm{~g})$	142.0
$\mathrm{CO}(\mathrm{g})$	-110.5	$\mathrm{HCl}(\mathrm{g})$	-92.31	$\mathrm{P}(s$, white)	0.0
$\mathrm{CO}_{2}(\mathrm{~g})$	-393.5	$\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$	-20.1	$P(s$, red $)$	-18.4
$\mathrm{CaCO}_{3}(\mathrm{~s})$	-1207.0	$\mathrm{I}_{2}(\mathrm{~g})$	62.4	$\mathrm{S}(\mathrm{s}$, rhombic)	0.0
$\mathrm{CaO}(\mathrm{s})$	-635.1	$\mathrm{I}_{2}(s)$	0.0	$\mathrm{S}(\mathrm{s}$, monoclinic)	0.30
$\mathrm{Cl}_{2}(\mathrm{~g})$	0.0	$\mathrm{N}_{2}(\mathrm{~g})$	0.0	$\mathrm{SO}_{2}(\mathrm{~g})$	-296.8
$\mathrm{F}_{2}(\mathrm{~g})$	0.0	$\mathrm{NH}_{3}(\mathrm{~g})$	-46.19	$\mathrm{SO}_{3}(\mathrm{~g})$	-395.7

8. Convert 1365 calories to Calories

$$
\begin{aligned}
& \text { calories to calories } \\
& 1365 \text { calories } x
\end{aligned}
$$

$$
\frac{1 \text { Calorie }}{1000 \text { calories }}=1.365 \text { Calories }
$$

9. Touching a test tube that has a reaction that contains an exothermic reaction your hand will feel (hot D cold) because heat will flow towards (your hand the test tube reaction). If your hand is considered the system, the change is therefore (exothermic (endothermic).

a. In your cartoon draw an arrow to show where heat is flowing.
b. If the water is the system this change was (exothermic endothermic)
c. If the metal is the system this change was (exothermic endothermic)
d. Write + or - in the parentheses to show whether you would expect a positive or negative number in the heat equation
water before \rightarrow water after

e. For the change described above, the energy flow can also be described with the words shown below -- except someone accidentally wrote the word heat twice. Cross off the one that does not belong.
water + heat \rightarrow water after
10. The change in the previous problem could also be considered from the point o view of the metal.
a. Write + or - in the parentheses to show whether you would expect a positive or negative number in the heat equation
metal before \rightarrow metal after

$$
\Delta \mathrm{\Delta}=(\square) \text { an swer }
$$

b. For the change described above, the energy flow can also be described with the words shown below -- except someone accidentally wrote the word heat twice. Cross off the one that does not belong.

$$
\text { metal }+ \text { b } \rightarrow \text { metal after }+ \text { heat }
$$

12. How much heat is released when 4.9 moles of methane gas are burned in a constant pressure system? ($890 . \mathrm{kJ}$ are given off if 1 mole of methane is burned)

$$
4.9 \text { moles } \times \frac{890 \mathrm{~kJ}}{1 \text { mole }}=4361 \approx 4400 \mathrm{~kJ}
$$

13. In an experiment, liquid heptane, $\mathrm{C}_{7} \mathrm{H}_{16}(\mathrm{I})$, is completely combusted to produce $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}$ (I), as represented by the following equation.

$$
\mathrm{C}_{7} \mathrm{H}_{16}(\mathrm{I})+11 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 7 \mathrm{CO}_{2}(\mathrm{~g})+8 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

The heat of combustion, $\Delta \mathrm{H}_{\text {comb, }}^{\circ}$, for one mole of $\mathrm{C}_{7} \mathrm{H}_{16}(\mathrm{I})$ is $-4.85 \times 10^{3} \mathrm{~kJ}$. Calculate how much heat would be released if 3.11×10^{-4} moles of heptane were combusted

$$
3.11 \times 10^{-4} \mathrm{~mol} \times \frac{4.85 \times 10^{3} \mathrm{~kJ}}{1 \text { mole }}=1.50835 \approx 1.51 \mathrm{~kJ}
$$

1. Using your algebra skills rearrange $Q=(m)(C)(\Delta T)$ to isolate the indicated variable in each case (isolate means 'get it on one side of the equals sign by itself).

Isolate C	$Q=m \subset \Delta T$	Isolate ΔT
	$Q=m \subset \Delta T$	
	rearranges to	
	$\frac{Q}{m \Delta T}=C$	
		$\frac{Q}{m C}=\Delta T$

2. How much heat is absorbed by 20 g granite boulder as energy from the sun causes its temperature to change from $10^{\circ} \mathrm{C}$ to $29^{\circ} \mathrm{C}$? (Specific heat capacity of granite is $0.1 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$)

$$
q=(20 \mathrm{~g})\left(0.1 \frac{\mathrm{cal}}{9^{\circ} \mathrm{C}}\right)\left(19^{\circ} \mathrm{C}\right)
$$

3. How much heat is released when 30 g of water at $96^{\circ} \mathrm{C}$ cools to $25^{\circ} \mathrm{C}$? The specific heat of water is $1 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$

$$
q=(30 \mathrm{~g})\left(1 \frac{\mathrm{ca}}{\mathrm{~g}^{\circ} \mathrm{C}}\right)\left(-71^{\circ} \mathrm{C}\right)
$$

4. Applying the physicist's definition of the term heat, decide whether or not there is any heat occurring to the object in italics. For each object you should indicate whether the heat is negative, zero or positive.
a) An ice cube is placed in a cup of hot coffee POS ITIVE
b) A pot of hot tea is sealed into a well-insulated thermos $z e r o$
c) Some cold cream is poured into a cup of hot coffee NEG ATIVE
d) You blow air across a bowl of hot soup PUSITIVE
e) You jump into an ice cold pond NEGATIVE
5. How much heat will raise a pot of 800 g of water from $20^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$?

$$
\begin{aligned}
& q=(800 g)\left(1 \frac{\mathrm{cal}}{9^{\circ} \mathrm{C}}\right)\left(+70^{\circ} \mathrm{c}\right) \\
& q=56000 \text { calories }
\end{aligned}
$$

6. What happens when you place two objects at different temperatures in contact with each other?

Heat flows from the hot object to the cold until they are equal temper
7. If a 3.1 g ring is heated using 10.0 calories, its temperature rises $17.9 \cdot^{\circ} \mathrm{C}$.

$$
q=m C \Delta T \quad \text { Calculate the specific heat capacity of the ring. } \quad \frac{(10.0 \mathrm{cal})}{(3.19)\left(17.90^{\circ}\right)}=C
$$

8. The temperature of a sample of water increases from $20^{\circ} \mathrm{C}$ to $46.6^{\circ} \mathrm{C}$ as it absorbs 5650 calories of heat. What is the mass of the sample? (Specific heat of water is $1.0 \mathrm{cal} / \mathrm{g}{ }^{\circ} \mathrm{C}$)

$$
\frac{q}{C \Delta T}=m
$$

$$
\frac{5650 \mathrm{cal}}{(1.0 \mathrm{~cd})\left(26.6^{\circ} \mathrm{C}\right)}=m \quad 210=
$$

9. The temperature of a sample of iron with a mass of 10.0 g changed from $50.4^{\circ} \mathrm{C}$ to $25.0^{\circ} \mathrm{C}$ with the release of 47 calories of heat. What is the specific heat of

$$
\frac{q}{m \Delta t}=C
$$

$$
\frac{47 \text { calories }}{\left.(10.0 \mathrm{~g})(-25.4)^{\circ}\right)}=C
$$

$$
0.19 \frac{\mathrm{col}}{\mathrm{gz}}
$$

10. A 4.50 g coin of copper absorbed 54 calories of heat. What was the final temperature of the copper if the initial temperature was $25^{\circ} \mathrm{C}$? The specific heat of copper is $0.092 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$. (1) FIND $\triangle T$ (2) THEN FIND FINAL teNs

$$
\begin{aligned}
& \Delta T=\frac{q}{m c} \\
& \Delta T=\frac{54 \mathrm{cal}}{(4.50 \mathrm{~g})(0.092 \mathrm{co1} 9)} \quad \Delta T=130^{\circ} \mathrm{C}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta T=T_{f}-T_{i} \\
& \Delta T+T_{i}=T f
\end{aligned}
$$

$$
\Delta T=\frac{54 \mathrm{cal}}{(4.50 \mathrm{~g})(0.092 \mathrm{c} 19 \mathrm{c})} \quad \Delta T=130^{\circ} \mathrm{C} \quad(130)+(25)=T_{f}
$$

11. A 155 g sample of an unknown substance was heated from $25^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$. In the process, the substance absorbed 569 calories of energy. What is the

$$
C=\left.\frac{Q}{M \Delta T}\right|^{\frac{Q}{m}} \quad C=\frac{569 \mathrm{cal}}{(155 \mathrm{~g})\left(15^{\circ} \mathrm{C}\right)} \frac{0.24 \frac{\mathrm{calorie}}{\mathrm{~g}} \mathrm{c}}{}
$$

12. What is the specific heat of an unknown substance if a 2.50 g sample releases 12 calories as its temperature changes from $25^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$?

$$
C=\frac{Q}{m \Delta T} \quad C=\frac{12 \text { calories }}{(2.5 \mathrm{~g})(-5 q)} \quad C=0.96 \frac{\mathrm{ea}}{\mathrm{gi}}
$$

