Review for the June 2014 Chemistry Final Exam

(The exam covers only second semester, from Jan 27 to June 6th)

Disclaimer: Studying this packet is a great start but is not a substitute for actually studying all $\mathbf{8 0}$ days of material. Hopefully time spent with this packet will help you find what parts of the semester you need to go back and study in depth, either from your notes or from http://genest.weebly.com

Of the $\mathbf{8 0}$ days we have been together this semester, the things in this packet are the ones that came up over and over.

About a third of what you need to know are specific facts. Get these from your notes.

Two thirds of what you need to know are skills. Get these by doing, redoing, and redoing one more time, all of the old homework problems that you learned to solve this semester.

UNIT 6 PERCENT

YIELD,

Vocabulary to know: -
diatomic - the wacky 7 all form diatomic molecules: isotopes
ionic band - Forms between metal $\dot{\varepsilon}$ noumetal
covdent bond-forms between nonmetal in nonmetal metal - elements from the left side of the table nonmetal - elements from the right side of the table coefficient - the big number, like the 5 in $5 \mathrm{H}_{2} \mathrm{O}$
atomic number is how many protons an atom has mass number is protons plus neut ions

$$
\% \text { yeld }=\frac{\begin{array}{c}
\text { actual } * \\
\text { yield }
\end{array}}{\begin{array}{c}
\text { theoretical } \\
\text { yield } * *
\end{array}}
$$

*acted yield is sometimes called "experimental yield"
** Sometimes called "calculated yieb"

Most of the problems in This Chapter have no formula. instead SOLVE THEM USING UNIT CONVERSION AND DIMENSIONAL ANALYSIS:

Balance the following reaction and answer the other questions

b. Write five possible mole ratios.

4. Imagine that 100 . grams of aluminum and 100 grams of chlorine gas (remember: wacky 7 formula for the chlorine molecule...) react according to the following stoichiometery

$$
2 \mathrm{Al}_{(\mathrm{s})}+3 \mathrm{Cl}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{AlCl}_{3(\mathrm{~s})}
$$

Which reagent will be the limiting reagent? How many grams of $\mathrm{AlCl}_{3(\mathrm{~s})}$ will form?

Step 1) Convert the mass of each reactant into moles of product

Step 2) Both of your statements in Step 1 can't be right. The one that will actually happen is the one that makes the least moles of product. Below this box write "The limiting reactant

The limiting reactant is chloride because it.
Step 3) Calculate the mass of product produced
makes the 1 past product.
Because we just
found that $0.940 \mathrm{~mol} \mathrm{AlCl}_{3}$ can form, we use that in our calculation:

5. Use the same three steps you used on the example from class. Imagine that 67.00 grams of aluminum and 60.50 grams grams of chlorine gas react according to the following stoichiometry

$$
2 \mathrm{Al}_{(\mathrm{s})}+3 \mathrm{Cl}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{AlCl}_{3(\mathrm{~s})}
$$

Which reagent will be the limiting reagent? How many grams of $\mathrm{AlCl}_{3(\mathrm{~s})}$ will form?

$$
\begin{aligned}
& \text { (12) } 60.50 \mathrm{gCl} 2
\end{aligned}
$$

Both cant be right; Cl_{2} will run at firs). Cl_{2} is the "LIMTING R AGENT"
4. 0.092 moles of iron filings are placed into a solution containing $0.158 \mathrm{~mol}^{2} \mathrm{CuSO}_{4}$. Assuming that they react according to the balanced equation below, what is the limiting reactant? How many moles of Cu will be formed?

$$
3 \mathrm{CuSO}_{4}(\mathrm{aq})+2 \mathrm{Fe}(\mathrm{~s}) \rightarrow 3 \mathrm{Cu}(\mathrm{~s})+\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})
$$

$$
\text { \#1 } \frac{0.158 \mathrm{~mol} \operatorname{cuso}_{4}}{1} \times\left(\frac{3 \mathrm{molcu}}{3 \mathrm{molcusan}}\right)=0.15 \mathrm{~mol} \mathrm{Cu} \text {. }
$$

$$
\text { \#2 } \frac{0.092 \mathrm{molFe}}{} \times\left(\frac{3 \mathrm{~mol} \mathrm{cu}}{2 \mathrm{~mol} \mathrm{Fe}}\right)=0.13^{18} \mathrm{~mol} \mathrm{Cu}
$$

5. One industrial process for making nitric acid begins with the reaction below. If $2.90 \mathrm{~mol} \mathrm{NH}_{3}$ and 3.75 mol_{2} are available, how many moles of each product are formed?

$$
4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}
$$

Find The Limiting Reactant

Now just calculate the other product, based on NH_{3} beng lime, ting

$$
\frac{2.90 \mathrm{~mol} \mathrm{NH}_{3}}{1} \times\left(\frac{6 \mathrm{molH} \mathrm{O}}{4 \mathrm{~mol} \mathrm{NH}} 3 \mathrm{H}\right)=4.35 \mathrm{~mol} \mathrm{H} \mathrm{H} \mathrm{O}
$$

1. Write the formula we usually use for calculating percent yield:
2. Which value are we most likely to obtain by weighing a product on the electronic scale? (circle only one answer)
a. actual yield
b. theoretical yield
3. If a chemist runs a reaction where her theoretical yield of binaphthalene was 1.51×10^{-8} grams but only 7.50×10^{-9} grams formed, what was her percent yield?
4. For the reaction of $\mathrm{SiO}_{2(\mathrm{~s})}+4 \mathrm{HF} \rightarrow \mathrm{SiF}_{4(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{L})}$ suppose there are 7.00 grams of $\mathrm{SiO}_{2(\mathrm{~s})}$ and 1.100 grams of HF present in the test tube, show by calculation which reactant is limiting.
5. A chemist reacts bromine gas with hydrogen gas to form HBr gas.
a. Write a balanced equation to describe this reaction. Remember some molecules may be diatomic.
b. If he starts with 13.1 moles of Br_{2}, calculate the theoretical yield of HBr in moles.
6. If 830. g of F_{2} and 12.0 g of O_{2} are reacted, they react as $2 \mathrm{~F}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{~F}_{2} \mathrm{O}_{(\mathrm{g})}$
a. Assuming that oxygen is the limiting reactant, calculate the theoretical yield of $\mathrm{F}_{2} \mathrm{O}$ in grams.
b. For this reaction, find the volume (in liters) of $\mathrm{F}_{2} \mathrm{O}_{(\mathrm{g})}$ that would be expected to form. (Assume the gas is at standard temperature and pressure.)
