Friday: SHORT Test.	BEATS.
PURPOSE HOW DO W. CONJUGATES?	E FIND.
WARMUP	الملا
Find the pH	0380M
answers: 1.42pH 2.63×10-1	3
#1 SOME ACID R RUN BACKWARDS MUS FORWARD	EACTIONS
ACID BASE AGID	BAJE

#2 SHOW HNO3 IN WATER.

HNO3 IS AN ACID.

SHOW HNO3 GIVING AN HT

HNO3 -> Ht + NO3

HNO3 + H2O -> NO3 + H3OT

H3OT

THYSOTERNIUM

#3 FILL IN THE MISSING CONJUGATE OF EACH PAIR

ACID	BASE
HBr	
	N03
2	H20
	HS04-
H 504	1

TECHNIQUE The conjugate base is missing an H⁺.

TECHNIQUE The conjugate acid has an extra H⁺.

Conjugate Acids and Bases

CAeMis+ry: http://genest.weebly.com Stop in for help every day at lunch and Tues,&Thurs after school!

Name HINTS Period_____

1. Give the formula of the conjugate acid of each: NO₃, H₂O, HSO₄

HNO3 , H30+ , H2 SO4

Identify the acid, base, conjugate acid and conjugate base for each of the following.

2.
$$HClO_4(aq) + H_2O(1) = H_3O^+(aq) + ClO_4^-(aq)$$
ACID
BASE
BASE

3.
$$H_2SO_3(aq) + H_2O(I) = H_3O^+(aq) + HSO_3^-(aq)$$

4.
$$HC_2H_3O_2(aq) + H_2O(1) = H_3O^+(aq) + C_2H_3O_2^-(aq)$$

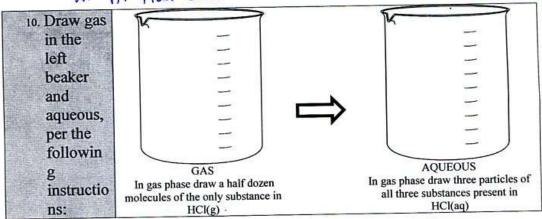
5.
$$H_2S(g) + H_2O(I) = H_3O^+(aq) + HS^-(aq)$$

6. These are all either acids or bases. **Draw a slash** through the molecule to show the half that would fall off. How many pieces will this fall apart into if made into an aqueous solution? (circle your choice)

namy process	""	tan apart mito it mat	ac mito an aqueous solution	. 10	uci	2.90	ur .	-110
NaOH _(aq)	12(22)	3? 4? 5?	HBr	12	2?	3?	42	5?
HNO _{Vao}	1?(2?)	32 4? 5?	КОН	1?	2?	3?	4?	5?
NaOH _(aq) HNO _{3(aq)} H ₂ CO ₃	1? 2?	3?) 4? 5?	HCH ₃ COO) ₂	1?	2?	3?	4?	5?

7. Circle the CATION element in each.

Circle any element that is a metal	This substance is	When one of these dissolves, how many squeous ions form?
H ₂ SO _{4(aq)}	acid / base / neither	
Mg(OH) _{2(sq)}	acid / base / neither	


Circle any element that is a metal	This substance is	When one of these dissolves, how many aqueous ions form?
NaOH _(aq)	acid / base / neither	3.
HNO _{3(aq)}	acid / base / neither	

8. Give the formula for the conjugate acid of CH3NH2 See # 1 HIN T

9. Give the conjugate base of each: HCl, HBr, HI,

technique: Remove !

11. Write a balanced equation that shows HClO4, losing a H+ to form its conjugate base.

HCRO4 -> H+ + CRO4

- 12. Write a balanced equation that shows HNO3, losing a H+ to form its conjugate base.
- 13. What happens to hydroxide concentration in water when base is added? (it rises / it falls / it doesn't change)
- 14. What happens to the hydronium concentration in water when base is added? (it rises / it falls / it doesn't change)

15. The following substances act as Bronsted acids in water. Write a chemical equation for each that illustrates its reaction with water.

reaction with water.							1
ammonium ion, NH ₄ ⁺	NHª	+	H20	\rightarrow	NH3	+	H30
H ₃ PO ₄	H ₃ PO ₄	+	H20	\rightarrow	H2PC	4 +	H ₃ 0
HBr				\rightarrow	1		

16. The following substances act as Bronsted bases in water. Write a chemical equation for each that illustrates its

reaction with water.			
СНОО-	CHOOT + H20	→ H CH00 + 1	+30
hydride ion: H-		→	
ammonia NH ₃		→	

- 17. What is the conjugate <u>acid</u> of HSO4-?

Identify the acid, base, conjugate acid and conjugate base for each of the following.

 $HSO_3^-(aq) + H_2O(I) = H_3O^+(aq) + SO_3^{2-}(aq)$ 19.

- $NH_3(g) + H_2O(1) = NH_4^+(aq) + OH^-(aq)$ 20.
- $HF(aq) + HSO_3^-(aq) = F^-(aq) + H_2SO_3(aq)$ 21.
- $HNO_2(aq) + HS^-(aq) = NO_2^-(aq) + H_2S(aq)$ 22.
- 23. What is the formula for the conjugate acid of water? ANSWER . #30 +
 24. What is the formula for the conjugate acid of water? ANSWER . #30 +
- 24. What is the formula for the conjugate base of water?

Acid #2

CAeMis+ry: http://genest.weebly.com

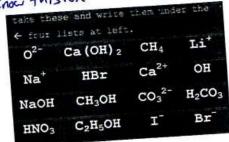
Start making a one sided, hand-written cheat sheet for the final exam. See tips on the class webstie: httP;//genest.weebly.com

٠. ٠	MO
\mathbb{R}	Name
$\forall \exists 1$	Period
4	7

1. Circle three substances that could make phenolphthalein turn pink: shows PINK if CH₃OH_(aq) Ba(OH)2_(aq) HNO_{3(aq)} CO_{2(aq)} HCI_(aq) CH_{4(aq)}

NH3(aq) KOH(aq) Circle three things that could make methyl orange turn red:

CO_{2(aq)} NH_{3(aq)} KOH_(aq) CH_{4(aq)}


CH3COON

CH₃OH_(aq) Ba(OH)2_{(i}

SKIP! YOU DON'T NEED to know this rule

3. Take things from the box at the right and write them onto the correct lists below. You should end up with 3 things per list.

S	hould end up	Within	
Ca(OH)2 Na OH	Cations Lit Lit Mat Ca2x	anions O ² CQ ² - I- Br	HBr H2C03 HNO3

Chemists around 1920 proposed a theory:

An acid is anything that donates a proton to another species.

A base is anything that accepts a proton from another species.

4. In each case below for any substance on the LEFT side of the arrow, mark it as follows: write "base" under anything that is acting as a Bronsted-Lowry Base and write "acid" under anything that is acting as a Bronsted-Lowry Acid.

5. What color is phenolphthalein in very basic solution?

Common Acid-Base Indicators

Indicator	Approximate pH Range for Color Change	Color Change
methyl orange	3.1-4.4	red to yellow
bromthymol blue	6.0-7.6	yellow to blue
phenolphthalein	8-9	colorless to pink
litmus	4.5-8.3	red to blue
bromcresol green	3.8-5.4	yellow to blue
thymol blue	8.0-9.6	yellow to blue

- (choose only one letter)A sample of a solution with a pH of 10 is tested separately with phenolphthalein and litmus indicator. The colors of the indicators are as follows
 - a. litmus is blue; phenolphthalein is pink
 - b. litmus is red; phenolphthalein is pink
 - c. litmus is blue; phenolphthalein is colorless
 - d. litmus is red; phenolphthalein is colorless

7.	What color is phenolphtalein in a beaker full of concentrated H2SO4?
	An indicator was used to test a water solution with a pH of 12. Of the combinations below what is the only one that could possibly be observed in the

- a. colorless phenolphthalin
- b. red litmus

situation?

- c. colorless litmus
- d. pink phenolphthalein
- 9. A blue solution containing an acid-base indicator was tested with a pH meter and found to have a pH of 5.5. Which of the indicators shown on the table shown here could be this indicator?

BROMORESOL GREEN

10. A solution was yellow in bromthymol blue and blue in bromcresol green.

According to the table here, what could be the pH of this solution?

AND ALONE 5. Y

11. Acid was added to a solution containing an indicator until the solution turned from blue to yellow. Which of the following would be the most acidic?

a. a yellow solution containing bromthymol blue <6.0

b. a yellow solution containing bromcresol green 3

c. a yellow solution containing thymol blue

b. what is the pH? PH = 3.704 Positive!
13. If during a titration a student finds that 466 mL of HNO3 acid contains 0.00033 moles of H+ a) What is the [H+]? $\frac{0.00033 \text{ mes}}{0.466 \text{ L}} = 7.08 \times 10^{-9} \approx 7.1 \times 10^{-9} \text{ mes}$
b) what is the pH?
pH=3.15
14. If a beaker contains 4.89×10 ¹⁴ H+ ions, in 0.790 liters of water, a. What is the [H+]? First, change to makes 1 moles 6.12×10 ⁻¹⁰ mdes 8.12×10 ⁻¹⁰ mdes 6.2×10 ⁻¹⁰ mdes 7.790 1307
the ph is 8.987
c. find the number of H+ ions that would be in a 690.mL (units!) volume of a solution that had the same molarity you found in answer A. Tough question. You need to (1) set up our old equation Molarity = L
(2) GORGER IT (molarity) ()-
(3) change the moles to ions
(1.03×10-9 nole) (3) = moles 7.107×10-10 moles (6.02×10 ic) (1.03×10-9 nole) (0.690 L) = moles 7.107×10-10 moles 7.107×10 moles
7.107×1010 = moles Answer: 4.28×10"4005

12. If a beaker contains 0.00000593 moles of H+ ions, in 30.0 mL of water,

a. What is the [H+]?

0.00000 593mdes = 1.98 × 10-4 M

15. In each case below for any substance on the LEFT side of the arrow, mark it as follows: write "base" under anything that is acting as a Bronsted-Lowry Base and write "acid" under anything that is acting as a Bronsted-Lowry Acid.

write "acid" under anything that is acting as a Bronsted-Lowry Acid.

a.
$$SO_4^{2^-} + H_3O^+ \rightarrow HSO_4^- + H_2O$$

Base H_3O_4

16. Fill in the chart using the rule: [H+] multiplied by [OH-] equals 1x10⁻¹⁴

Α	1 x 10 ⁻²	1×10-12
В	1 x 10 ⁻⁹	1 × 10-5
С	1×10-6	1 x 10 ⁻⁸
D	1 x 10 ⁻¹¹	1×10-3
E	1×10-3	1 x 10 ⁻¹¹

17. Fill in the chart using the rule: pH = -log[H+]

F	5.77 x 10 ⁻⁶	5.239
G	1 x 10 ⁻⁵	5.0
Н	1 × 10-8	8
i	1.58×10-4/21×10-4	3.8