What are RATIOS good for?

-

EHS CA3mIs+ry
Mr. Genest

Name _____

Tutors! Adults! Help this young chemist by visiting http://enest.weebly.com with any smart phone

Multiplication with units.	Use a calculator.	Your answer	should	have units	written as
one or more words. Rou	nd to correct sig fi	igs			National Property of the Parket

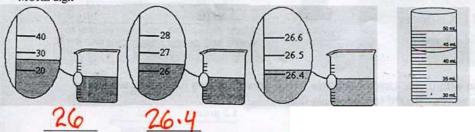
one or more words. Round to correct sig f $\frac{75 \text{ cm}}{12.87 \text{ liters}} = 20.$ $\frac{91.2 \text{ grams}}{594.4 \text{ grams}} = \frac{117 \text{ pretzels}}{594.4 \text{ grams}} = \frac{117 \text{ pretzels}}{12.87 \text{ liters}} = \frac{117 \text{ liters}}{12.87 \text{ liters}$

1.2 grams	1 mL	22
	11.7 grams	=
1.2 grams	11.7 grams	
el Film Little (Se	1 mL	Total Control

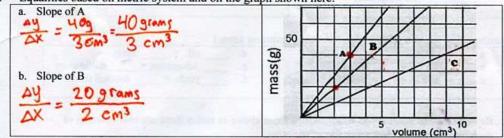
Numbers that are in a relationship (use your common sense)

II. Rewrite the six numbers-in-relationships from above as ratios there are two versions of each, one an upside down version of the other.

a. ratios for eggs and dozens could be $(\frac{1 \text{ dozen}}{12 \text{ eggs}})$ or $(\frac{12 \text{ eggs}}{1 \text{ dozen}})'$


b. ratios for eyes and humans could be () or ()

- d. ratios for yards and fields could be (or ()


III. Insert one of your ratios from above into each equation below in a way that the units will cancel. Use a calculator to write an answer that has correct UNITS and sig figs.

b. 13 humans
$$_{x}\left(\frac{2 \text{ eyes}}{1 \text{ human}}\right) = \frac{21 \text{ eyes}}{1 \text{ d.}}$$
 55 football fields $_{x}\left(\frac{1}{1 \text{ human}}\right) = \frac{1}{1 \text{ human}}$

15. Estimate the level of liquid in the four containers. Remember: read between the lines and add only ONE MORE digit

Equalities based on metric system and on the graph shown here:

- Use your two slopes from the graph to write ratios

c. Two ways to write a ratio based on the Slope of Line C are

VI Insert one of your ratios from above into each equation below in a way that the units will cancel. Use a calculator to write an answer that has correct UNITS and sig figs.

a.
$$225 \text{ cm}^3 \text{ of "A"}_x \left(\frac{\text{LID g rams}}{3 \text{ cm}^3} \right) = \frac{3000 \text{ grams}}{\text{c. } 0.48 \text{ g of "B"}_x} \left(\frac{\text{LID g rams}}{\text{c. } 0.48 \text{ g of "B"}_x} \right) = \frac{3000 \text{ grams}}{\text{c. } 0.48 \text{ g of "B"}_x} \left(\frac{\text{LID g rams}}{\text{c. } 0.48 \text{ g of "B"}_x} \right) = \frac{3000 \text{ grams}}{\text{c. } 0.48 \text{ g of "B"}_x} \left(\frac{\text{LID g rams}}{\text{c. } 0.48 \text{ g of "B"}_x} \right) = \frac{3000 \text{ grams}}{\text{c. } 0.48 \text{ g of "B"}_x} \left(\frac{\text{LID g rams}}{\text{c. } 0.48 \text{ g of "B"}_x} \right) = \frac{3000 \text{ grams}}{\text{c. } 0.48 \text{ g of "B"}_x} \left(\frac{\text{LID g rams}}{\text{c. } 0.48 \text{ g of "B"}_x} \right) = \frac{3000 \text{ g rams}}{\text{c. } 0.48 \text{ g of "B"}_x} \left(\frac{\text{LID g rams}}{\text{c. } 0.48 \text{ g of "B"}_x} \right) = \frac{3000 \text{ g rams}}{\text{c. } 0.48 \text{ g of "B"}_x} \left(\frac{\text{LID g rams}}{\text{c. } 0.48 \text{ g of "B"}_x} \right) = \frac{3000 \text{ g rams}}{\text{c. } 0.48 \text{ g of "B"}_x} \left(\frac{\text{LID g rams}}{\text{c. } 0.48 \text{ g of "B"}_x} \right) = \frac{3000 \text{ g rams}}{\text{c. } 0.48 \text{ g of "B"}_x} \left(\frac{\text{LID g rams}}{\text{c. } 0.48 \text{ g of "B"}_x} \right) = \frac{3000 \text{ g rams}}{\text{c. } 0.48 \text{ g of "B"}_x} \left(\frac{\text{LID g rams}}{\text{c. } 0.48 \text{ g of "B"}_x} \right) = \frac{3000 \text{ g rams}}{\text{c. } 0.48 \text{ g of "B"}_x} \left(\frac{\text{LID g rams}}{\text{c. } 0.48 \text{ g of "B"}_x} \right) = \frac{3000 \text{ g rams}}{\text{c. } 0.48 \text{ g of "B"}_x} \left(\frac{\text{LID g rams}}{\text{c. } 0.48 \text{ g of "B"}_x} \right)$$

b. 4.50 g of "A"
$$_{x}$$
 (———) =