






Name Period



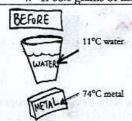
## Conversions

If a beaker gained 4.59x10<sup>7</sup> joules, how many

b. Calories did it gain? (upper case C)

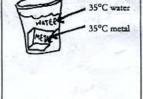
## Q=mc ∆T Type Problems

Instructions: For the a) (heat) = (mass) (spec, ) ( formula Q=mc AT fill in the parentheses at right. Fill in (a) with the words such as "change of temperature", "heat", "specific heat", and "mass" b)[J]=[9][3°][°C Fill in (b) with the units, such as "grams", "joules", "C", and joules

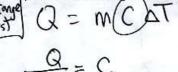

Fill in blank with whichever is more appropriate, 'specific heat' or 'heat'

- Q stands for this in the formula  $Q=m C \Delta T$ .
- 3. Spec. heat C stands for this in the formula Q=m C AT
- 4. Spec. heat This is a constant number for a given substance.
- heat This is sometimes measured in joules
- 6. Spec. Wt This is sometimes measured in  $\frac{J}{g \cdot c}$
- neat This is sometimes measured in calories

8. How much heat will raise a pot of 500. g of water from 26. °C to 90. °C? Q = (500)(4.18)(64°c)  $Q = 133760 \quad \text{fools}$ 


| Story problem                                                                                                                                                                                     | colculate $\Delta T = T_{final} - T_{initial}$ | Write the formula Q=mc \Darkor and rearrange it to get the unknown by itself | plug in numbers and solve                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------|
| What is the specific heat of silicon if it takes 384J to raise the temperature of 45.0g of Si from 23.00°C to 35.00?                                                                              | AT=35-23=12                                    | Q=m(e)AT                                                                     | C= (384 J)<br>(45.09)(122<br>C= 0.711 J           |
| If a copper hammer gains 24,881 joules of heat while its temperature goes from 13°C to 71°C, what is the hammer's mass? The specific heat of copper is 0.385 J/g°C.                               | ΔT=71-136m<br>ΔT=58°c                          | Q=mcat<br>m=Q<br>Cat                                                         | (58 c                                             |
| A metal coin absorbed 656.04 calories of heat. What was the mass of the coin if the initial temperature was 25°C and the final temperature was 86°C? The specific heat of copper is 0.092 cal/g°C | ΔT = 86:-25°C                                  | $Q = MC \Delta T$ $M = \frac{Q}{C\Delta T}$                                  | m= (656.04 sed) (0.092 set) (61° se  m= 120 grams |

4. If 68.0 grams of metal were dropped into 171 grams of water calculate the following




a) Find 
$$\Delta T$$
 for the water.  
 $\Delta T = 35^{\circ} - 11^{\circ} c$ 

c) How many joules of heat heat left the metal?



(a) Calculate the specific heat of the metal.



5. Solve the following questions for a certain substance that contains only oxygen, hydrogen, and carbon, in the following amounts:

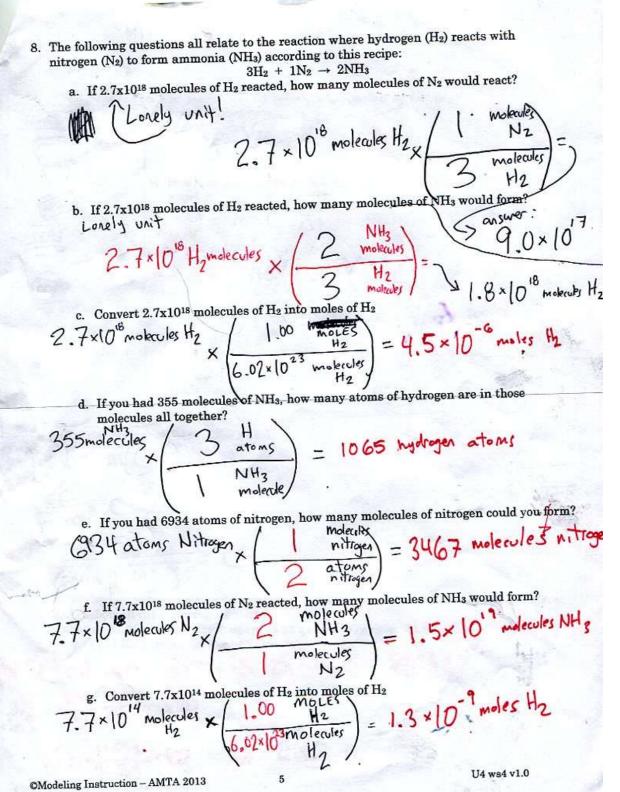
Carbon: 34.00grams Hydrogen: 5.22 grams Oxygen: 11.04 grams

Find the percent oxygen by mass

©Modeling Instruction - AMTA 2013

b. How much oxygen would be in a larger sample of this same substance, if the sample's total mass was 400. grams? Lovely Mumber!

6. Solve the following questions for a certain substance that contains only oxygen, hydrogen, and carbon, in the following amounts:


Carbon: 44.06grams Hydrogen: 6.20 grams Oxygen: 13.41 grams

b. How much oxygen would be in a larger sample of this same substance, if the sample's total mass was 690. grams?

c. If you obtained a sample of this same substance that contained 84.2 grams of oxygen, how large would that sample's total mass be? Lonely number

List the seven elements that exist as diatomic molecules:

N2, O2, F2, Cl2, Br2,

