

1. How much heat is released when 30 g of water at $96^{\circ} \mathrm{C}$ cools to $25^{\circ} \mathrm{C}$? The specific heat of water is $1 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$.
$Q=m$ c ΔT
$Q=(30 \mathrm{~g})(10 \mathrm{cos})\left(77^{\circ} \mathrm{c}\right)$
$Q=2130^{\circ} \mathrm{calog} \mathrm{ies}$
2. Calculate answers to the questions:

For each item below indicate whether it applies to HEAT or TEMPERATURE
3. tempratucan be measured by inserting a thermometer
4. heat Can be measured by holding water nearby and then multiplying mass water $\times C p_{\text {water }} x$
$\Delta T_{\text {water }}$
5. tam β one common unit for measuring this is degrees celsius
6. temp one common unit for measuring this is kelvins
7. heat one common unit for measuring this is joules
8. If a 3.1 g ring made of unknown metal is heated using 10.0 calories, its temperature rises $17.9^{\circ} \mathrm{C}$. Calculate the specific heat of the ring.
$C=\frac{Q}{m \Delta T}$
$C=\frac{(10.0 \text { calories })}{(3.1 \mathrm{~g})\left(17.9{ }^{\circ} \mathrm{C}\right)}$
$C=0.18 \frac{\mathrm{cal}}{\mathrm{g} \cdot \mathrm{c}}$
9. The temperature of a sample of water increases from $20^{\circ} \mathrm{C}$ to $46.6^{\circ} \mathrm{C}$ as it absorbs 5650 calories of heat. What is the mass of the sample? (Specific heat of water is $1.0 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$)

$$
\begin{aligned}
& Q=m C \Delta T \\
& m=\frac{Q}{\square \Delta T}
\end{aligned}
$$

$$
\begin{aligned}
& m=\frac{(5650 \mathrm{cal})}{\left(1.0 \frac{\mathrm{cal}}{5^{*}}\right)\left(26.6^{\circ} \mathrm{c}\right)} \\
& m=210^{\mathrm{grams}}
\end{aligned}
$$

10. A 155 g sample of an unknown substance was heated from $25^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$. In the process, the substance absorbed 569 calories of energy.
What is the specific, heat of the substance?
$C=\frac{Q}{m \Delta T}$
$C=\frac{(569 \text { cal })}{(1559)\left(15^{\circ}\right)}$
$C=0.24 \frac{\mathrm{~cd}}{9 \mathrm{c}}$
11. What is the specific heat of an unknown substance if a 2.50 g sample releases 12 calories as its temperature changes from $25^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$?
$C=\frac{Q}{m \Delta T}$
$C=\frac{(12 \mathrm{cal})}{(2.50 \mathrm{~g})\left(5^{\circ} \mathrm{c}\right)}$
$C=0.96 \frac{\mathrm{cal}}{\mathrm{g}^{\circ} \mathrm{C}}$

12. Temper	
apure	Definition
a measure of the average vibration	
speed of the particles	

14. Calculate answers to the two questions:

15. If crushed and placed in foaming water which substance would sink fastest (based on their specific gravity): magnesium \qquad Lithium
16. If a mixture of these three metals was heated until it was completely liquid and then allowed to cool, circle which substance will freeze (become solid) first (based on their melting point (mp): magnesium L Lutetium Lithium
17. If crushed and placed in foaming water which substance would float the best on the surface, (based on their specific gravity): magnesium

Lutetium
Lithium
5. If heated until they were a gas, which substance would stay liquid the longest before furring into a gas (based on their boiling points):
magnesium Lutetium Lithium
6. If heated until they were a gas, and then allowed to cool to a liquid, which substance would become liquid first (based on their boiling points):

Lutetium
Lithium

substance will freeze (beck

[^0]
"I think that water is a (mixture / pure substance)."

Homework Check:

Please take out your Tiger Sheet

TODAY'S AGENDA (you don't need to copy this):

1. Homework check
2. Urine and Immortality
3. How to get Iron from a rock
4.Practice Worksheet

Substance (def'n) anything where all of the smallest grabbable particles are all the same.
All samples of a given substance will have the same properties (melt a the same temperature, have the same density, etc)

Mixture (defr'n) A mixture is any group of two or more substances.

Samples of mixtures have widely varying properties depending on the ingredients and their percentages. The properties of a mixture are a combination of the properties of its substances.

There are dozens of ways to separate a mixture into single substances. Here are a few:
a) Melting just one substance out from the mixture while solid, leaving the rest solid
b) Freezing just one substance out from the mixture while liquid
c) Evaporating just one substance at a time from the mixture
d) Trying to float the mixture in water
e) Trying to dissolve certain ingredients
f) Using a magnet
g) and many others...

Let's practice applying this principal...

[^0]:

