Thank you Lea for remanding me to post these!
Math Practice for the January Final Exam #1 East.H.S. ©λ€M s+rγ Name Date Strγ Strγ
1. If you have 7030. kg, how many Gg do you have? your cheat sheat tells you to bounce the declinal SIX places to the LEFI
2. If you have 0.005011. kiloliters, how many microliters do you have? bounce the decimal nine places to the right
3. We describe three storage "accounts" to understand the changes we see in chemistry. State their names and describe how energy is stored in these three storage modes Thermal - is vibrations Chemical - food and fue have Phaseplergy - gas > liquid > solid Work energy A tray of water (20 °C) is placed in the freezer and turns into ice cubes (-8 °C)
4. A tray of water (20 °C) is placed in the freezer and turns into ice cubes (- 8 °C) Initial Energy Flow Final Eth Eph Ech
List one or more mistakes in the solution shown above The Eph should be changing a LOT (8/c LIQUID TRAING TO SOLID)
5. These numbers will NOT be given to you on your final exam. You will only be given a periodic table. Instructions: Write down some of these and any numbers like these onto your 'cheat sheet' now
You will always be given these numbers on tests and quizzes.
0 degrees C = 273 kelvins = absolute zero 760. torr = 760. mmHg = 1.00 atm = 101 kPa = 101,300 pascals = 14.7 p.s.i. 1.00 mole of things is 6.02x10 ²³ things. \ *** you should either memorize your metric units or commit them to your sheet
6. How many mm Hg are in 77.3 kPa? ANSWER: 580 mmHg show work!
6. How many mm Hg are in 77.3 kPa? ANSWER: 580 mmHg show work. 7. How many torr are in 1.19 atm? OModeling Instruction - AMTA 2013 1 U3-ws 1 v2.1

This is a before and after problem. Your solution should be a 'lonely number' followed by one or more ratios.

8. A quantity of gas exerts a pressure of 98.6 kPa at a at a temperature of 22.0 °C. If the volume remains unchanged, what pressure will it exert at -8.0 °C?

MUST CHANGE TEMPERATURE TO KELVINS FIRST! answer: 88.6 kPg (show work)

9. If a beachcomber finds a copper coin that contains 8 x 10²¹ atoms of copper, what is the volume of the coin? Assume that 255 atoms of copper have a mass of 2.69 x 10⁻²⁰ grams. Also assume that the density of copper is 8.98 grams per mL.

ANSWER: 0,09 mL

11. Based on this graph, What is the density of metal B? Show all your work and include appropriate units.

12. Based on this graph, What is the mass of 9.0 cm³ of metal B?

13. A student filled a graduated cylinder with water and read the meniscus at 25.8 mL. The student then dropped a solid material into the graduated cylinder and the water level rose to 35.9 mL. If the solid material had a density of 2.99 g/mL, determine the mass of the solid object.

35.9ml - 25.8ml = 10.1ml

100

Substance	Density (g/mL)	14. You made some cubes out of each metal in the table that each measures 2.00 cm on
Aluminum	2.70	every side.
Titanium	4.54	/
Zinc	7.13	a. What is the volume of each cube in cm3? in mL? Volume is leigth x width x he igh
Tin	7.31	m12 value is leigh x width x he ig
Iron	7.87	
Nickel	8.90	$V = \mathcal{O}_{cm^3}$ $V = \mathcal{O}_{mL}$
	8.96	V =
Copper Silver	10.50	X at company to be made to be a second of the contract of the
Lead	11.35	
	13.55	
Mercury Gold	19.30	Sea Tel. (2417-19 XIII property Tel. (2017)
b. Find the mass of the lead cube nickel cube zinc cube		(Show your work below) = 1660 grows Pl 207.2 grow Pb = 1660 grows Pl 207.2 grow Pb = 470, grow N 8 cm ³ Ni x (58.69 g Ni) = 470, grow N 1 cm ³ Ni) = 523 grow Z 8 cm ³ Zn x (65.39 g Zn) = 523 grow Z

- 951236 is

		-11.15		ment below?
• /.	5000 miles	1000		
• 9	03.0 g			-
• 8	00.9520	seven		

Convert the following to "normal" numbers (with no exponents anywhere)

C. 7.2×10^{-2} O. 0.72

Mark (H) or (T) for each item below indicate whether it applies to HEAT or TEMPERATURE

- 18. H is measured with a cup of water called a Calorimeter
- 19. _____ is just a measure of the average speed of the particle vibrations
- 20. H one common unit for measuring this is joules
- 21. A cube of aluminum with a density of 2.70 g/mL has a volume of 52.8 mL, what its mass? (Hint, find the numbers in a relationship, find the lonely number, find the unit for the answer. Set up words before numbers.)

Mixture of two substances. Substance 1: 200 Substance 2: 200

6

24. If the CH4 gas became colder the height of liquid would

a. still be 30.0 mm

b. be greater than 30.0 mm c. be less than 30.0 mm

25. If the atmospheric pressure became less (due to bad weather) the height of liquid would

d. still be 30.0 mm

e be greater than 30.0 mm

be less than 30.0 mm

26. How many torr is the ambient pressure in this story problem?

(use of from #23)

27. Write your best estimate of the length of this object using Main point you must add one estimated

The left ruler: 1.4 incles (two sing figs.)

The right ruler: 1.47 index (three sig figs)

digit after the

Math Practice for the January Final Exam #2

The most useful single item to review is the stapled together sheet that looks like this (available at the class website):

Chemistry Semester One Review- 2014-15

- Be familiar with properties of matter we have studied. Be familiar with their definitions and how they are used. Which ones are always the same for a substance? (See list below.)
- What units can be used to measure the following quantities?
 i) Volume vi) Heat

x) Boiling point

However, this sheet you are holding is good for practicing some of the math problems that will be on the test.

1. How many silver atoms are contained in 0.650 grams of silver?

O .6509 Ag x | wors Ag | 6.02 × 10 2 × atom) = 6.02 × 10 2 × atom)

2. How many moles are in a 12.0 g sample of FeO?

12.0gramsFe0x (1 mde) - 0.167mole Fe0

3. What is the mass of 0.015 moles of Ca(OH)2?

3. What is the mass of 0.015 moles of Ca(OH)₂?

$$1 \times C_0 = \frac{40.02}{10.02} \frac{9.0015}{10.000}$$
 $2 \times 1^{-1} = \frac{2.029}{32.003/mol}$
 $2 \times 0 = \frac{32.003/mol}{11.003/mol}$

4. What is the percent by mass of Ca in calcium chloride, CaCl2?

5. If you have 505 pL, how many L do you have?

6. If you have 0.34 μm, how many picometers do you have?

7. Given info: You buy a used car and in the trunk find an Tupperware tub with a substance. When analyzed it has 6.93g of oxygen and 0.43 g of hydrogen. If the molar mass of the compound is 34.0 g/mole, what is the molecular formula?

	Find the empirical formula
	6,93 gians 0 x (1 molo) = 0,433mol
	0=43grams Hx (1 mol H) = 0=426 mol
THE STATE OF THE PARTY OF THE P	O H that's about O.
	ANSWET: O.H.

Find what the mass would be for a mole of this empirical formula.

Now randomly choose a few integers and multiply your empirical mass by them.

Homes one gives 17.01 the story problemes two gives 34.02 that for something times three gives \$1.03 that has a man times three gives \$1.00 for three of 34 g/m.

So the formula is two times \$17.00 for three of three of

- 8. Is your cheat sheet up to date? You can bring an 8.5" x 11" sheet, handwritten, not photocopied, not computer-printed. Include formulas, a metric conversion table, 6.02×10^{23} ...
- 9. How many torr are in 99.3 kPa? $\frac{760 \cdot \text{forr}}{101.3 \cdot \text{kPa}} = 0.980 \cdot \text{forr}$

Substance	Density (g/mL)	10. What would be the mass of a 44.8 mL piece of tin?
Aluminum	2.70	
Titanium	4.54	
Zinc	7.13	
Tin	7.31	44.8mL (7.31 glans) = 207 gran
Iron	7.87	44.0ml x / +. 31 Jum / = 5/ + gran,
Nickel	8.90	^ / /
Copper	8.96	1 ml
Silver	10.50	
Lead	11.35	
Mercury	13.55	
Gold	19.30	
ou don't need to put	numbers like this on you	r cheat
sheet		

Notice the arrows Flowled a bit lower than they were originally!

11. If 13.6. grams of metal were dropped into 28.5 grams of water calculate the following

- 0

a) Find ΔT for the water. $\Delta T = \int_{\text{find}} -\int_{\text{initial}} = 35^{\circ} \text{c} - 16^{\circ} \text{c} = 19^{\circ} \text{c}$

b) How many joules of heat entered the