

Nan	1e			
		118		
Per	od_	- 重要化	2350	
			性值 。	

- 1. Can you see a molecule? No
- 2. Explain why too Small
- 3. Can you count the molecules by looking at a chemical reaction?
- 4. What does Avogadro's Principle tell us about the number of particles in the four balloons shown below?

	C	٠. الد	1	4
1	SUM	144	MUSE	Mey
tick	DON	of	nuper	70
	PM	OT	n w P &	

(each balloon contains one substance, an element. There are no compounds.)

2.999	2.999	2.999	2.999
liters of	liters of	liters of	liters of
Substance	Substance	Substance	Substance
A	В	C	D
(3)			
(5.)	(:)	(• • •)	()
V	V	~	V
184	23	276	943
grams	grams	grams	grams

239

- IF we arbitrarily choose <u>the lightest</u> <u>substance</u> and divide the others by it, we can get relative ratios of the mass of single pieces. Do this for each substance.
 - a. Relative Mass of Substance A

b. Relative Mass of Substance B

$$\frac{239}{239} = 1$$

c. Relative Mass of Substance C

$$\frac{2769}{239} = 12$$

d. Relative Mass of Substance D

Finish for , homework.

6. What does Avogadro's Principle tell us about the number of particles in the four balloons shown below?

Same volume balloons should have the same of particles

(each balloon contains one substance, an element. There are no compounds.)

2.999	2.999	2.999	2.999
liters of	liters of	liters of	liters of
Dubstance	Bubstance	Substance	Substance
\mathbf{E}	F	G	H
(-)			
\checkmark	V	V	V
85	221	17	102
grams	grams	grams	grams

- IF we arbitrarily choose the lightest substance and divide the others by it, we can get relative ratios of the mass of single pieces. Do this for each substance.
 - a. Relative Mass of Substance E

b. Relative Mass of Substance F

2219 = 13

$$\frac{2219}{179} = 13$$

c. Relative Mass of Substance G

d. Relative Mass of Substance H

8. State Proust's Law: A Substance always has

the same relative number (same count)

of each type of clement.