Some answers to the review packet, problem number 16 from the second page of the review packet Some answers to the review packet, problem number 16 from the second page of the review packet

Some answers to the review packet, problem number 16 from the second page of the review packet
Some answers to the review packet, problem number 16 from the second page of the review packet
Some answers to the review packet, problem number 16 from the second page of the review packet
c 2) $4.0 L_{\times}\left(\frac{1.1 \mathrm{~atm}}{3.4 \mathrm{Latm}_{\mathrm{m}}}\right)=1.3$
c 3

$$
5.01 \text { titers } \times\left(\frac{123 \mathrm{~K}}{473 \mathrm{~K}}\right) \times\left(\frac{1.05 \text { atm }}{0.65 \text { atm }}=2.1\right.
$$

1. For the substance dipropylene glycol $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{2}$ (an ingredient in Old Spice deodorant).
According to the periodic table, what is the mass of a mole of this molecule? **

$$
\begin{aligned}
& C: 3 \times 12.01=36.03 \\
& \mathrm{H}: 8 \times 1.01=8.08 \\
& 0: \quad 2 \times 16.00=\frac{32.00}{76.11 \text { grams mole }}
\end{aligned}
$$

Find the mass of 0.0550 moles of this molecule.

$$
0.0550 \mathrm{~mol} \times\left(\frac{76.119 \mathrm{smol}}{1 \mathrm{~mol}}\right)=4.19 \mathrm{~s} \mathrm{~mol}
$$

2. For the substance iodine (Remember the Wacky Seven? Remember Hoffen Brickle?)

3. How many moles of copper are in 4.7×10^{22} atoms of copper?

$$
4.7 \times 10^{22} \text { atoms } \times\left(\frac{1 \text { anoles }}{6.02 \times 10^{23}}\right)=0,078 \text { modes }
$$

4. How many moles of molecules are in each of the following?
a. 1.50×10^{23} molecules on NH_{3}
1.50×10^{23} maleates $\times\left(\frac{1 \text { modes }}{6.02 \times 10^{33} \text { moleseses }}\right)=$
b. 6.02×10^{22} molecules of Br_{2}
5. What is the mass in grams of each of the following?
a. $\mathbf{0 . 7 2 0}$ moles of $\mathrm{N}_{2} \mathrm{O}$

$$
\begin{array}{|l|}
\hline N: 2 \times(14.01)=28.02 \\
0: 1 \times(16.00)=\frac{16.00}{44.02 \mathrm{~g} \mathrm{smmac}} \\
\end{array}
$$

b 5.08×10^{21} molecules of $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$

$$
\begin{aligned}
& \left.\begin{array}{l}
\text { C: } 2 \times(12.01)=24.02 \\
\text { N: } 6 \times(1.01)=6.06 \\
0: 1 \times(16.00)=\frac{16.00}{46.08 \mathrm{~g}} \mathrm{rm} / \mathrm{mof} \\
5.08 \times 10^{2 \times} \text { molecur } \times\left(\frac{1 \text { mole }}{6.02 \times 10^{23}}\right) \times\left(\frac{\mathrm{mosc}}{46.08 \mathrm{grm}}\right. \\
1 \text { mole }
\end{array}\right)=
\end{aligned}
$$

6. How many hydrogen atoms are in a molecule of each of these substances?
a. $\mathrm{Ca}(\mathrm{OH})_{2}$ \qquad b. $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$ \qquad 8
c. $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$ \qquad 12
d. $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}$
\qquad
7. (Challenge problem!)How many atoms of chlorine are there in 16.5 g of iron (III) chloride,
FeCl_{3} ?

$$
=\begin{gathered}
1.84 \times 10^{23} \\
\text { at } \\
\text { atoms }
\end{gathered}
$$

