Grab a periodic table
Purpose: How do we predict the subscripts in formula like $\mathrm{Al}_{2} \mathrm{O}_{3}$?
warmup on your table circle the atoms than me. $+1,+2,-2,-1$

\# 0

$$
\begin{aligned}
& \left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{~S}_{2} \mathrm{O}_{3}\right) \\
& \text { Is a compound with } \\
& \frac{2}{8} \text { nitrogen } \\
& \frac{2}{3} \text { hydrogen } \\
& \frac{3}{3} \text { oxygen }
\end{aligned}
$$

* All ionic sußstanels MUST BE NEUTRAL

\#1
ALL IONIC SUBSTAKE
MUST BE NEUTRAL

*2 Cis Cross Rule

$\mathrm{Al}_{2} \mathrm{O}_{3}$ is the correct
\#2
THE GRIS CROSS RULE

$$
\begin{aligned}
& \mathrm{Al}^{3+} \quad \mathrm{S}^{2-} \\
& \text { forms } \\
& \mathrm{Al}_{2} \mathrm{~S}_{3} \\
& \text { Check it: } \mathrm{Al}^{3+} \mathrm{Al}^{3+} \mathrm{S}^{2-} \mathrm{S}^{2-} \mathrm{S}^{2-} \\
& \text { It adds up to zero (i) It's possible } \\
& \text { possible. } \\
& \mathrm{Al}^{+3} \quad \mathrm{SO}_{4}^{-2} \\
& \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \\
& \mathrm{NH}_{4}^{+1} \quad \mathrm{PO}_{4}^{-3} \\
& \left(\mathrm{NH}_{4}\right)\left(\mathrm{PO}_{4}\right)_{1} O R\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}
\end{aligned}
$$

Answers to Tuesday's

classwork:
Writing Formulas bof Crossing oiver
The quickest way to determine the formula of a compound of two elements or polyatomic ions is to use the Cross-OverRule. Look up the oxidation state of each element or ion and reduce to lowest terms. Then cross over the oxidation states without the sign to find the subscripts as shown in the diagram to the right.

Using the Cross-Over Rule, determine the formula for compounds of the elements and polyatomic ions below, and write your answer in the answer

