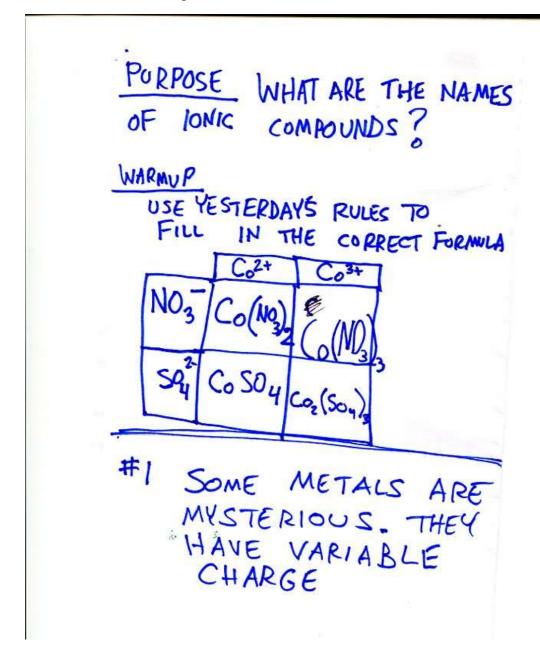

Partial hints for solving tonight's El Sol Sheet

This is a pretty good drawing of what Thomson thought a Plum Pudding NEUTRAL hydrogen at the atom looked like. It shows a positive circle with one electron in it.

$\overline{(\cdot \cdot)}$		SO ₄ ²⁻	NH ₄ ⁺	Не
This is (choose one) a) an anion b) neutral c) a cation	This is (choose one) a) an anion b) neutral c) a cation	This is (choose one) a) an anion b) neutral c) a cation	This is (choose one) a) an anion b) neutral c) a cation	This is (choose one) a) an anion b) neutral c) a cation

- 2. Go through the boxes below and do the following:
 - · circle any metal that has a variable charge
 - · cross out any polyatomic ion

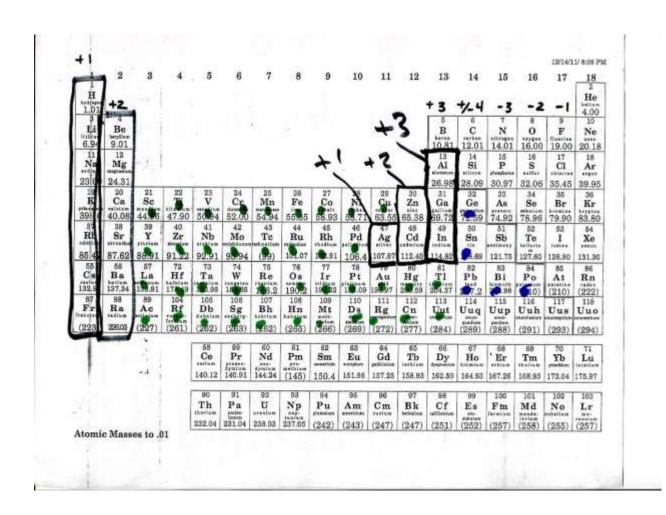
CO ₃ ²⁻	Al ³⁺	Fe ²⁺	PO ₄ ³⁻	Au [†]
SERVICE DE	Aluminumy -	TOONA	7	


- 3. Go back through the boxes above and write the name. Remember the rules for naming:

 metal ions that do have a variable charge are the name of the element, followed by a roman numeral that tells the charge. For example Fe³⁺ is named *Iron(III)*
 - Polyatomic ions just get whatever name is on your photocopied ion sheet given on Tuesday.
 - metal ions that <u>don't</u> have a variable charge are called by their element name. For example, Sr²⁺ is
 just named strontium.
 - 4. Do steps #2and #3 on the boxes below

NO ₃	Pb [†]	V ²⁺	Au ³⁺	NH ₄ ⁺
•	LEAD(I)	VANADIUM (II)	2	

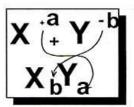
nlorine atom	1 hydrogen atom	1 oxygen ato	m 1 nit	rogen atom	1 carbon atom
(3)	•	0			
	6. How mol 7. What is t 8. Which w a) C ₈ H ₁ 9. What is t answer s	ecules are in the formula of could be an accould be an account to by C ₄ H ₁₆ of the molecular v		? say what's in t ubstance? (the	5
NO ₃	compounds by combining	g the names yo		Au ³⁺	NH ₄ ⁺
CO ₃ ²⁻	Na ⁺	Fe	2+	Au ³⁺	Au [†]
11. PbNO ₃	7 7 Stati	430	15. (NH ₄)	CO3 AMM	(II) NITRATE ONIUM CAPBON (III) NITRATE
13. VCO ₃	below, fill in the formula	of the ionic cor	17. Fe ₃ (Pe	1Kon(11)	PHOSPHAT
Zinc sulfate			Silver sele	nide	Ammonium sulfide
		Silver oxalate			Managed as a state
Lead (II) nitra	te Silver o	xalate	Lead (IV) o	A	Magnesium oxide SKIP
Lead (II) nitra Copper (I) sulfa	- -	l) sulfite		IP.	

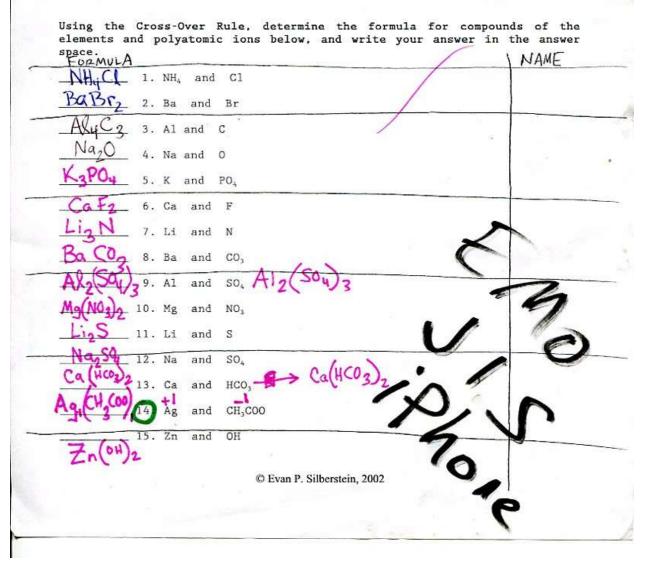

class notes for Wednesday February 4, 2015

V+1 is Vanadium(I) V+2 is Vanadium(II) V+5 is Vanadium(II) V+6 is Vanadium III The roman numeral indicates the positive charge #2 POLYATOMIC IONS are named from the table PO43- is Phosphate NO2 is nitrate

#3
If the metal has a proun charge just whom charge just name it for its name lement Mg2+ is magnesium.

Ag+ is silver

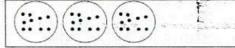

The elements marked with a dot have variable charge. Their charge is unpredictable, so when you describe ions from these squares on the periodic table you must include a roman numeral in their name to tell what the charge is


(in contrast, elements like Al3+, Na+, Ca2+ DON'T need a roman numeral in their name -- every good chemist knows what the charge is of those elements)

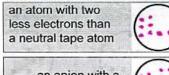
Answers to Tuesday's classwork and the La Mano Sheet:

Writing Formulas by Crossing Over

The quickest way to determine the formula of a compound of two elements or polyatomic ions is to use the *Cross-Over Rule*. Look up the oxidation state of each element or ion and reduce to lowest terms. Then cross over the oxidation states without the sign to find the subscripts as shown in the diagram to the right.



Use the drawing below to answer #1 through #4 below. Each circle here is an atom, each dot is an electron



←atoms in sticky tape. (they are neutral)

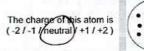
- 1. Warm up questions:
 - a. How many atoms are shown in the box above?
 - b. What is the correct term for each circle? (cation / neutral atom / anion)
 c. What is the charge of a single ? (-1)/ zero / +1)

 - d. If electrons are added to these atoms the charge of the tape will become more (negative / positive)

2. Using the neutral sticky tape atoms above as a reference point, draw appropriate numbers of electrons into each circle below.

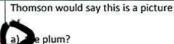
a cation with a charge of +1


an anion with a charge of -4



a cation with a charge of +3

Using the neutral sticky tape atoms above as a reference point, estimate the charge on each atom below.



A neutral_pitrogen atom looks like this according to JJ Thomson's Plum Pudding Model:

The charge

Thomson would say this is a picture

b) the pudding?

a) the plum? b) the pudding

The charge is

Pulling the 'Top Tape' in our lab r to the Bottom Tape.	removed electrons fr	rom the Top Tape ar	nd added electrons		
a) This would cause the number	er of electrons in the	Top Tape to (increa	se /(decrease).)		
b) This would cause the number	er of electrons in the	Bottom Tape to (inc	rease decrease).		
c) Draw dots in each tape atom Top-Tape and Bottom Tape	below to show your	guess for how man	y electrons in the		
Less THAN TEN	←ato	←atoms in Top Tape. (cations)			
More THAN TEN		ms in Bottor nions)	n Tape.		
Use the following pictures of	f NEUTRAL atoms to ans	wer the next four quest	tions		
neutral Hydrogen neutral lithium	neutral nitrogen	neutçal oxygen	neutral fluorine		
a fluorine anion with a charge of -1	each atom to create	e the object describe	TWO RONS		
a nitrogen anion with a charge of -3		tion of hydrogen h a charge of +1	NO PRONS		
		0			
	1	-			