class notes:

Topic: Practice with

1) Theoretical Yield This is from your calculation:
2) Percent Yield

$$
\%=\frac{\text { ACTH }}{\text { Y HELD }}+100
$$

3) Limiting Reagent
\# $\frac{9 \text { eg mol } 1 / \text { mol }}{\mathrm{m}}=\frac{19}{\text { mol }}=$ Answer

Warmup: Calculate the molecular mass (in grams per mole) of $\mathrm{KAl}\left(\mathrm{SO}_{4}\right)=12 \mathrm{H}_{2} \mathrm{O}$

$$
K: 1 \times(39.10)=39.10
$$

$\mathrm{Al}: 1 \times(26.90)=2690$
S: $2 \times(32.09=64.12=474.44 \mathrm{~g} / \mathrm{mol}$
$0: 20 \times(16.9)=320.00$
$H: 24 \times(1.01)=24,24$
"THEORETICAL YIELD" - the amount of product you were "supposed" to get according. to your cal culator.

TEST FRIDAY over the lost two weeks
NEXT LAB LAY: TOMORROW NORMALCLASS:TODAY Topic: Practice with

1) Theoretical Yield Your culcollated yield in a perfect world
2) Percent Yield

$$
\% \text { yield }=\frac{\text { grams you actually weigh out }}{\text { grams theoretical greed }} \times 100
$$

3) Limiting Reagent the react ort you ron out of; the reactant that gives the least product!"
Warmup: Calculate the molecular mass (in grams per mole) of $\mathrm{CuCl}_{2} \cdot \mathrm{CH}_{2} \mathrm{O}$ (three waters)

$$
\begin{aligned}
& \text { Cu: } 1 \times(63.55)=63.55 \\
& \mathrm{Cl}: 2 \times(35.45)=70.90 \\
& H: 6 \times(1.01)=6.06 \\
& O: 3 \times(16.00)=\frac{48.00}{188.51} \mathrm{grams} / \mathrm{moll}
\end{aligned}
$$

hints on how to solve the homework tonight:

limiting reactant \& percent yield
CheMistry: http://genest. weebly.com
Stop in for help every day at lunch and Tues, weds., \&Thurs after school!
After-hour's question? Email me af home: eagenest@modison.k12.wi.us

1. (Circle answers). You calculate the theoretical yield by converting the amount of each of the (reactants / products) into the amount of just one of the (reactants / products).
2. The reactant that gives the least product is called the \qquad .
3. The formula for finding percent yield is:

The balanced reaction we used in lab:
$2 \mathrm{Al}_{(9)}-2 \mathrm{KOH}_{(a s)}+4 \mathrm{H}_{2} \mathrm{SO}_{4}(s)+22 \mathrm{H}_{2} \mathrm{O}_{(6)} \rightarrow 2 \mathrm{KAl}_{\left(\mathrm{SO}_{4}\right)_{2}} \cdot 12 \mathrm{H}_{2} \mathrm{O}_{(3)}-3 \mathrm{H}_{2}(\xi)$
4. Using a periodic table and the information above, fill in these conversion factors:

USe Periodratabl $\quad 1$ mole of potassium hydroxide $=$ \qquad grams
\qquad mole of $\mathrm{H}_{2} \mathrm{SO}_{4}=$ \qquad moles of H_{2} Use the balanced reaction \rightarrow mole of $\mathrm{AI}=$ \qquad moles of $\mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2}=12 \mathrm{H}_{2} \mathrm{O}$
 \qquad grams $\mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2}=12 \mathrm{H}_{2} \mathrm{O}$
5. In a perfect world, if you react 808 moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in the above reaction how many moles of H_{2} will you get?

mol_{2}
6. In the real world, Bobby Brown does the above reaction with 808 moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and he only gets 501

THEN USE THE enough of the other reactants,
\#1 $123 \mathrm{~g} \mathrm{Al}{ }^{\mathrm{a}}$

the smaller one is limiting

$12 \mathrm{H}_{2} \mathrm{O}$ will be his theoretical yield?
c. If he only gets 208 g of $\mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2}-12 \mathrm{H}_{2} \mathrm{O}$, what was his \% yield?

$$
\frac{2089}{\text { theretlical }} \times 100=\% \text { yield }
$$

8. Calculate the answer writing both number and correct UNIT.

$$
\left(\frac{4 \operatorname{grams~} \mathrm{Zn}}{7 m L \mathrm{Zn}}\right) \times\left(\frac{3 m L H_{2} O}{1 m L Z n}\right) \times\left(\frac{5 m L \mathrm{Zn}}{2 m L H_{2} 0}\right)=
$$

The balanced reaction we used in lab:

$$
\left.2 \mathrm{Al}_{\mathrm{o}}\right)-2 \mathrm{KOH}(2)+4 \mathrm{H}_{2} \mathrm{SO}_{4}(x)-22 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{~K} \rightarrow 2 \mathrm{KA1(SO4)2} \mathrm{\cdot 12H}_{2} \mathrm{O}(\mathrm{~m})-3 \mathrm{~Hz}(\xi)\right.
$$

9. In a perfect world, if you react 40.8 grams of Al in the above reaction how many moles of

$$
\left.\begin{array}{l}
\mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2}=12 \mathrm{H}_{2} \mathrm{O} \text { will you get? mol Al } \\
40.8 \mathrm{~g} \mathrm{Al}
\end{array}\right) \times\left(\frac{\operatorname{mol} A l y x}{\operatorname{mol} A l}\right)=
$$

10. In the real world you attempt the above reaction with 40.8 grams of Al and you only get 680. grams of of $\mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2}=12 \mathrm{H}_{2} \mathrm{O}$

then USe\% YiELD, FORMUCA

b. List three things that might have caused your yield to be so low:
11. If you try the above reaction again, using 3.00 grams of aluminum and 16.5 grams of KOH and more than enough of the other reactants, ANS WV: ALUMINVM $15 \times$ Kt E LIMITING REAEUNS
a. which will be the limiting reactant?*

b. How many grams of $\mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2}=12 \mathrm{H}_{2} \mathrm{O}$ will be your theoretical yield?**:
3.00 grans $A x \times\left(\frac{\operatorname{mol} A \mid)}{9 A l}\right) \times(\square) \times(-\quad$ ALTA $)=9 A M A$
c. If you only get 30.6 g of $\mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2}=12 \mathrm{H}_{2} \mathrm{O}$, what was your $\%$ yield?
*Strategy: Try converting grams of the first reactant into grams of product, Then do the same for the second reactant. The limiting
reactant will be whichever reactant gives the least product product.

