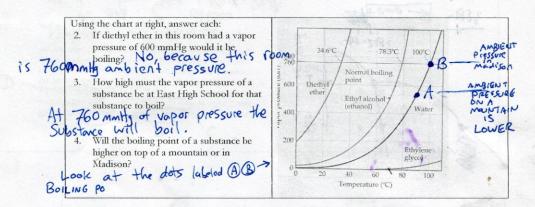

Review! (the test is Monday.)

CAeMis+ry: http://genest.weebly.com

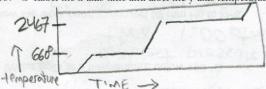
Stop in for help every day at lunch and Tues, Weds., & Thurs after school!

After-hours question? Email me at home: eagenest@madison.k12.wi.us



For full credit: 1) you must work where your partner is working .

2) Be in your regular desk 6 minutes before the bell for credit check


kPa 760 mmHg Write the standard pressure in

5. Fill in the empty boxes using the vapor pressure from the graph above.

	substance	vapor pressure	the ambient pressure	Is the substance boiling?	temperature
because the lefinition, if boiling	ethyl alcohol	3 500	500 mmHg	yes	70°c
5,	diethyl ether	400mmHg	400 mmHg	yes	17°C
sour = pr	Sur Alcohol	600 mmHg	760 mmHg	no	74 °C
conity (water	200 mmHg	200	yes	64 °C

6. Draw your own heating curve for aluminum, knowing that it melts at 660 °C and vaporizes at 2467 °C Label the x-axis time and label the y-axis temperature.

7. As temperature rises what happens to vapor pressure? VAPOR PRESSURE INCREASES

8. The temperature at which all motion stops is Zero K

	- 10-	
	O If the absolute temporature is increased four times higher what have a to the	
	9. If the absolute temperature is increased four times higher what happens to the kinetic energy? Kinetic Energy increases by HX	
	Explain one way each of the following could happen. a. Water boils at a temperature above 100 °C.	
	The ambient pressure must be greater than 1.00 atm.	
	b. Water boils at a temperature below 100 °C. The ambient pressure must be les	5
	than 1:00 atm	
	10. Show the work need to convert 50 mm Hg to kPa. $50 \text{ mm Hg} \times (101 \text{ kPa}) = 6.6 \approx 7 \text{ k}$:Pa
	11. The graph below is a normal boiling point	•
	phase diagram for substance. Label the	Tal point
	line, normal boiling point, vapor/gas,	POINT
	liquid, solid, triple point, and critical	
	point.	!
	Temperature	
12.	The normal melting and poiling points of O ₂ are -218°C and -183°C respectively. Its triple points at -219°C and 1.14 torr, and its critical points at -119°C and 49.8 atm. (a) Sketch the phase diagram for O ₂ , showing the four points given and indicating the area in which each phase is stable. (b) Will O ₂ (s) float on O ₂ (l)? Explain. (c) As it is heated, will solid O ₂ sublime or melt under a pressure of 1 atm? Notice that the points Alow LiQuid 13. Diamond and graphite are both made out of carbon. Explain how it is possible that the possible that the points of the hardest things of the bardest things.	at
	The atoms of diamonal are strongly bonder	next.
ANSI		the subs