

ANSWERS

To be completed with the help of the blue Addison - Wesley textbook Chemistry, by Wilbraham, et al

1a. There are three reactions on page 212, copy the first			
one into the box below			
(It's the one with potassium in it)	del a la valchia del		
The state of the s			
and vanious as it			
S matter spirote 1			
A STATE OF THE STA			

1b.

What does the book call this type of

- □ single replacement reaction
- □ double replacement reaction
- □ combination reaction

reaction?

Period

□ decomposition reaction

2a. From p. 214, copy the last reaction on the entire page into the box below (It's the only one with carbonate anion in it...)

<u>2b</u>. What does the book call this type of reaction?

- □ single replacement reaction
- □ double replacement reaction
- □ combination reaction
- decomposition reaction

3. Based on what you wrote in 1 and 2 above, classify each of these as either a <u>combination</u> or a <u>decomposition</u> reaction

a. DECOMP

b. Decomp

$$MgCO_3 \rightarrow MgO + CO_2$$

c. COM bination

 $S_n + N_2 \rightarrow S_{n_3}N_4$

			215,000	
6. Based on the patterns you say	w in #4 and #5, decide wh	ether each of the fo	llowing is Single	
Replacement or Double Repl	acement.			
a. SINGLE CEMENT	$Li + Fe(NO_3)_3 \rightarrow LiN$	$O_3 + Fe$		
b. DOUBLE MON	$RC1 + Ba(OH)_2 \rightarrow$	KOH + BaCl ₂	2 og web Bell	
SINGLEREP	Cl₂ + LiI → LiCl + I	i Tu	30.3 (1.65a)	
C. <u> </u>	Ciz · Lii · Liei · L		SJAugri	
7. Look carefully at the first pictur (you may need to look at your n	re in Figure 8.9 on page 217 notes or your lab report), wr	. Based on our recer ite a reaction for wha	t lectures and especially the lab t is occurring	
	(C) 3 (9)	DANS HISTORY	MOLE TO WOOD IN	
CoClz	+ Fe +	FeCl2+	CU MAD	
8. According to pp. 222-223, w	hich type of reaction always	ays has two reactan	ts and one product?	
□ single rep	lacement reaction			
□ double re	placement reaction		TUBMESA SER	
□ combinat	ion reaction		MATAULA MINO	
☐ decompose 9. According to pp. 222-223, w	sition reaction hich type of reaction alw	ays has one reactan	t and two products?	Copper Control
□ single rep	placement reaction		WALL ST	
□ double re	placement reaction		(NOMEDIALITIES)	
□ combinat	ion reaction		and software the same	
□ decompo	sition reaction	Zo & HLEON	MAN AND AND AND AND AND AND AND AND AND A	
Get a classwork stamp (3 pts 10. Get a classwork stamp (3 pts 4a, 4b, 5a, 5b.	s) for copying into your r s) for copying into your n	notebook, just your otebook JUST THE	answers E ANSWERS to 1a, 1b, 2a, 2b),
	Get a stamp	NA CHARLE	mangarat.	SEG
0人是自然性性	here	Fig. + All Company	WIND HAIR	
	1.1 60 6.11	to an at an armon		
 classify each of the reaction COMBUSTION, 	s below as one of the follo	SINGLE RE	PLACEMENT,	
DECOMPOSITION,			EPLACEMENT	
COMBINATION,			WM 15 LAND	
C=110.20T				
a.ComBUST any res	action that has oxygen	as a reactant an	d water and carbon dioxi	de
as products				
b. COMBUST CH	+ 0-	→ CO ₂ +	H ₂ O	
b. CH	4 + O ₂	→ CO ₂ +	1120	

```
c. REPUACEMENT Pb(NO<sub>3</sub>)<sub>2</sub> → Zn(NO<sub>3</sub>)<sub>2</sub> + Pb
d. COMBINATIONS
e. DECOMPOS ITTON
H2O2
                                H<sub>2</sub>O +
E. REPLACEMENTED
                                       HCl →
DOUBLE
REPLACEMENTNISO4
                                       Li<sub>3</sub>PO<sub>4</sub>
                                                          Ni<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>
                                                                              Li<sub>2</sub>SO<sub>4</sub>
h. COMBUSTION COHIS
                                       O_2
                                                    CO<sub>2</sub> +
i. COMBINATION SO2 +
                                             SO<sub>3</sub>
i. CONSINATION Fe
                                                    Fe<sub>2</sub>O<sub>3</sub>
& REPLACEMENT Fe
                                       CuSO<sub>4</sub>
                                                                 Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>
COMBINATION Li + N2 > Li3N
m. COMBINATIONAL + O2 > Al2O3
n. Single The reaction we did in lab last week with the nail (see your notes)
o. DECOM POS MON Na2CO3 → Na2O + CO2
q. REPUCEMENT Cl2 + LiI → LiCl + I2
TECOMPOSTION AOH → Na2O + H2O
SINGLE REPLACEMENT
Mg + 2 HCl > MgCl2 + H2
t. REPLACEMENT FeCl<sub>3</sub> + NaOH → Fe(OH)<sub>3</sub> + NaCl
u. REPLACEMINI Na + H<sub>2</sub>O → NaOH + H<sub>2</sub>
```