I'm here at lunch every day.

Come for just 5 minutes, it

Purpose:

Where in a chemical equation should we write "Energy"?

WARMUP:

Name each.

Bros Pentabronine Mono iodide
N205 DINTROCEN PENTOXIDE

K20 Potassium oxide (Metal!)

Recall the three kinds of energy we learned in October:

Eth means thermal (amount visp Atlons)

Eph means phase (High = GAS need = Liquid)

Ech means hemical (energy hiding in the different)

Most reactions either take in or give off energy

/ → B
es took in Y
e energy he B
d
like:
HERM

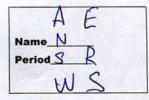
Some units for energy are: 4.184 joules = 1 calorie

#4) wo ways to write an exact number for the energy in a reaction:

if A, B, C, and D are substances

IS THE SAME AS WRITING

A+B
$$\rightarrow$$
 C+D
 $\Delta H = +99 \text{ joiles}$


 $A + B \rightarrow C + D + 99$ joules

IS THE SAME AS WRITING

 $A+B \rightarrow C+D$ Now be negative: $\Delta H = -99$ joules

Predict the products for the following reactions then balance the equation,

	Write the complete reaction as a Dalanced reaction.
(combustion of C ₄ H ₁₀)	2 C4 H10 +13 02 38 CO2 +10 H20
(combination) pure calcium reacting with pure fluorine to just a single product	$Ca + F_2 \rightarrow CaF_2$
(combination) calcium chunks and bromine- liquid react to form a single solid substance (write the phases before you balance it)	Cas+ Brzus CaBrzus
(single replacement) $Na + CaSO_4 \rightarrow ? + ?$	ZNa + Casoy > Naggy + Ca
(Double Replacement) AlBr ₃ + K ₂ SO ₄ → ?? + ??	2 AlBr3 + X2 SO4 , Al2(SO4)3 GKBr
(Single Replacement) CuCl ₂ + Al →?? + .??	3 Cocly +2 Al 7 Alog + 3 Cu

Did you remember to balance the six reactions above?

Chemical reactions either absorb or give off energy. This can be shown by writing energy as a reactant or product. Which of the two ways below would best describe this change of energy for a combustion reaction? (this is new for us - just make your best guess and we'll give the answer tomorrow)

a)
$$CH_4 + 2O_2 + \underline{energy} \rightarrow 2H_2O + CO_2$$

b) $CH_4 + 2O_2 \rightarrow 2H_2O + CO_2 + \underline{energy}$

When ammonium nitrate dissolves, the solution feels cold to touch.

Which of the two ways below would best describe this change of energy?

(a)
$$NH_4NO_{3(S)}$$
 + energy $\rightarrow NH_{4(aq)}$ + $NO_{3(AQ)}$

(b) $NH_4NO_{3(S)}$ $\rightarrow NH_{4(aq)}$ + $NO_{3(AQ)}$ + energy

ished yet. Make sure you also (1) get the lab ready to hand in Friday and (2) re-do old worksheets to