
Writing Names of Molecular Substances

CleMistry: http://genest.weebly.com

Stop in for help every day at lunch and Tues & Thurs after school!

A.

Definition: Ionic Substances contain a cation and anion. They usually have a metal with one or more nonmetals. Rare exception to this:

Occasionally they have NH4+ instead of a metal. (For example, NH₄NO₃ is an ionic compound.)

Examples of ionic substances:

NazPoy

B.

Definition: Molecular Substances contain only nonmetals.

Examples of molecular substances:

C.

How to name Ionic Substances:

Use all the rules we learned on our last test.

D.

How to name Molecular Substances:

mono/di/tri element mono/di/tri element ide

For example,

N₂H₅ is named dinitrogen pentoxide and BrF is named bromine monofluoride

Don't use Roman numerals!

Omit "mono" if it is at the beginning of the name.

Instructions: Copy these six formulas into the appropriate two lists below.

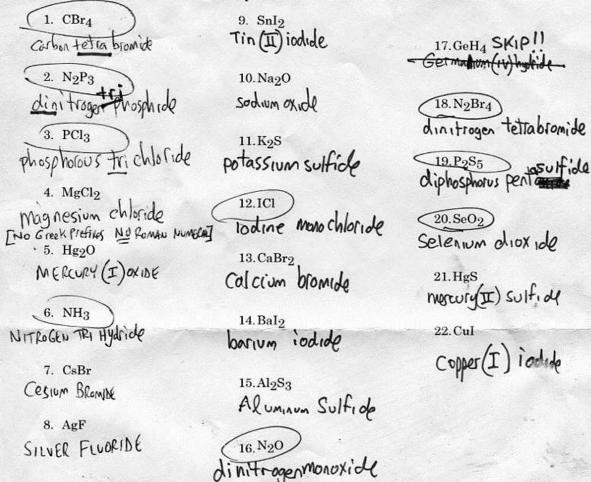
 N_2O_4 Al₂S₃ H₂O CO CuCO3 C2H6

List each ionic formula then write a name using the rules from last week:

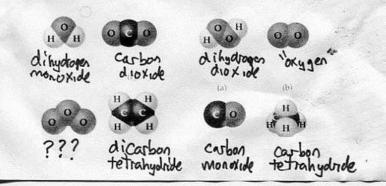
Aless aluminum sulfich

2) cucas copper carbonate

List each molecular formula, then write a name using the mono/di/tri rules we learned today:


- 3) N 2 O 4 DINITROGEN TETROSIDE
- 4) H2O dihydlogen monoxide 5) CO carbon monoxide

6) C.H. diarbon hexahydride


Instructions:

A) Circle any substance that is a molecular substance

B) Name each molecular substance you circled USING TODAY'S RULES.

- C) Now go back and name each ionic substance USING LAST WEEK'S RULES
- D) For each molecule below, write the formula and the name

I'm here at lunch every day.

Come for just 5 minutes, it helps.

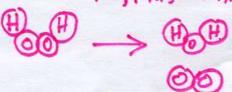
Purpose:

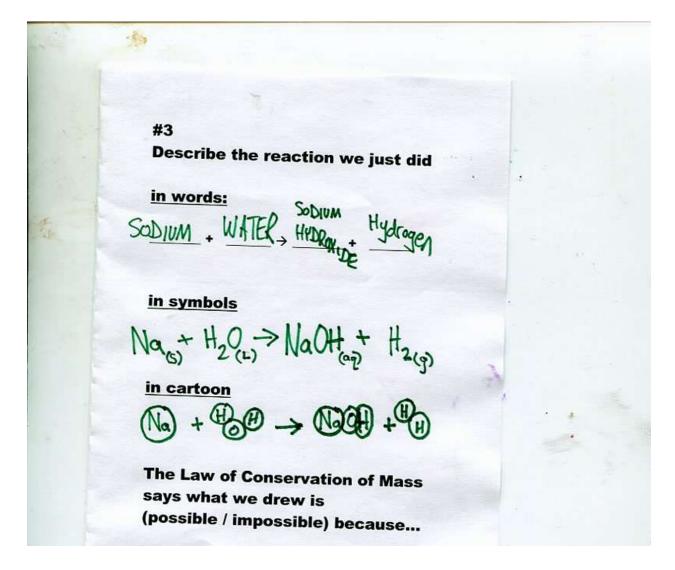
How do we make reaction equations obey the Law of Conservation of Mass?

WARMUP:

letters and numbers	cartoon
NH ₃	ESE B
H ₂ O	?
?	HE HO
3NH ₃	?

letters and numbers	cartoon
NH ₃	HZ E
H₂O	(HOA)
3H20	ASPER HOS
3NH ₃	OF OF


- 60


#1
Features of Our Current Model of
Matter

#2
Conservation of Mass
Matter can never be
destroyed or
created.

For example, this is impossible:

The equation seems to show there were 2 hydrogen atoms before but 3 hydrogen atoms after....therefore what we drew is *impossible* because matter cannot be created out of nothing. This violates the Law of Conservation of Matter.