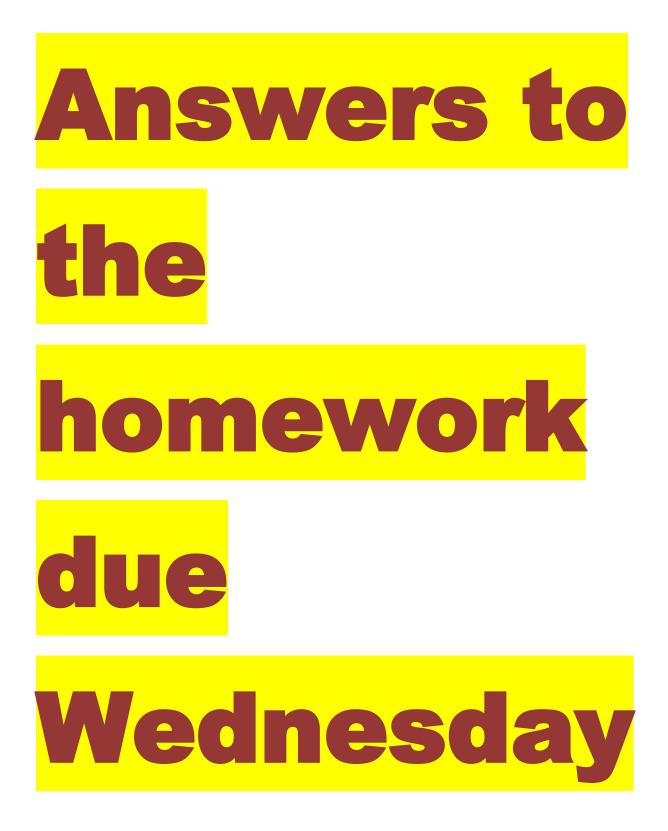
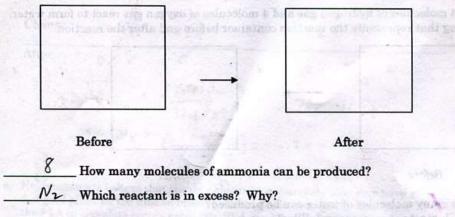

Answers to the review packet that was given Wednesday and won't be checked:



1 × 107.87: 107.87 1× 14.01 : Ag: 14.01 N : 48.00 169.88 gians/mol 3× 16 1. Now you try it blem If 2.7 grams of silver nitrate react with excess copper metal, how many grams of silver are -> CUNO3 * Ma produced? + Cu 107.879 As 1 mole Az × 1 Ag Ag make Agues grows 1. foromsAc = 2. Fgroms Agill L 16938 1

10 0.00

8 g 20


100

2. Write the equation for the formation of ammonia from nitrogen gas and hydrogen gas.

Balanced Equation: $N_1 + 3H_2 \longrightarrow 2NH_3$

24 Given 6 molecules of nitrogen and 12 molecules of hydrogen, make a drawing that represents the reaction container before and after the reaction.

2 How many molecules of excess reactant are there?

Construct a Before-Change-After Table for this reactant mixture:

26

Equation:	N2 +	3 42	-> ZNH3
Before	6 mo)	12mol	Omol
Change	-4 mo)	-12 -12	+ 8 mul
After	7 ~ 1)	0 mil	8 mg/

According to the table you just made,

 $\frac{\frac{8}{N_{\nu}}H}{\frac{2}{2}}$

How many molecules of ammonia can be produced? Which reactant is in excess? Why?

How many molecules of excess reactant are there?

Describe what you must look for in a particular reactant mixture to decide which reactant will be in excess (have some left over after the reaction): When 0.50 mole of aluminum reacts with 0.72 mole of iodine to form aluminum iodide,

How mone	males of al		will be formed?	0.48
now many	moles of al	uminum iodide	e will be formed?	
Equation:	ZAI	+ 3 12 -	-> ZAIJ	
Before	, 50	.72	1 0	
Change	-,48	-,72	+ .48	
After	- ,02	0	. 48	-

4. When sodium hydroxide reacts with sulfuric acid (H₂SO₄), water and sodium sulfate are the products. Calculate the <u>mass</u> of sodium sulfate produced when 15.5 g of sodium hydroxide are reacted with 46.7 g of sulfuric acid. [Hint: which unit is used in all stoichiometry reasoning?]

Equation: 2 NAOH + H₂SOy \longrightarrow 2 H₂O + Na₂SOy Before .387 .476 O O Change -.387 -.194 +.387 +.194 After O x282 .387 .194 $35.5_{S}N_{E}OH \times (\frac{1 m_{0} N_{E}OH}{40, g N_{E}OH}) = .387 m_{0} N_{B}OH$ $46.7_{S}H_{2}SO_{4} \times (\frac{1 m_{0} N_{E}}{68g H_{2}}) = .476 m_{0} N_{B}SOy$ $.194 m_{0} N_{B}SO_{4} \times (\frac{192 SN_{B}SO_{4}}{1 m_{0} N_{B}SO_{4}}) = 27.5_{g} N_{B}SOY$ 5. A 22.4 g sample of oxygen gas is placed in a sealed container with 2.50 g of hydrogen gas. The mixture is sparked, producing water vapor. Calculate the mass of water formed. Calculate the number of moles of the excess reactant remaining.

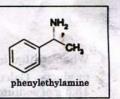
Equation:
$$2H_2 + 0_2 \longrightarrow 2H_20$$

Before 0.70 1.24 0
Change $-0.62 - 1.24 + 1.24$
After 0.08 0 1.24
 $22.4_5 0_2 \times (\frac{1-010}{32.00.5}0_1) = 0.700 \text{ mol } 0_2$
 $2.50_5 H_2 \times (\frac{1 \times 01 H_2}{2.00.5 H_2}) = 1.24 \text{ mol } H_2$
 $I_1 24 \text{ mol } H_20 (\frac{18.00.5 H_2}{1.00.5 H_2}) = 22.35 H_20$

.84

6. Neuroscientists believe that the only chemical in chocolate that may have a feel-good effect on the human brain is phenylethylamine (PEA). Although the PEA in chocolate occurs naturally, PEA can be made in the laboratory by the following reaction:

 \rightarrow C₈H₁₁N


phenylethylamine

C8H8O

acetophenone

CH5NO2 +

ammonium formate

(PEA) How much PEA can be made from 75.0g of ammonium formate and 125g of acetophenone? What mass of the excess reactant remains?

+

 $CO_2 + H_2O$

4. 27.5 g

5. 22.5 g, 0.075 moles xs

6. 126 g, 9.45g xs