Perfect answers to \#8 and \#4 from the "Homework \# 2", which has a picture of my mom...

8. Determine the mass of water vapor you would expect to form (and the percent yield) in the reaction between 15.8 g of NH_{3} and excess oxygen to produce water and nitric oxide (NO). The mass of water actually formed is 21.8 g .
Equation: $\underline{4} \mathrm{NH}_{3(\mathrm{~g})}+\underline{5} \mathrm{O}_{2(\mathrm{~g})} \rightarrow \underline{6} \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+\underline{4} \mathrm{NO}_{(\mathrm{g})}$

| Before 0.928 | xs | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |

Change	-0.928	+1.39
After	0	1.39

$15.8 \mathrm{~g} \mathrm{NH}_{3} \times \frac{1 \mathrm{~mol} \mathrm{NH}_{3}}{17.0 \mathrm{~g} \mathrm{NH}_{3}}=0.928 \mathrm{~mol} \mathrm{NH}_{3} \times \frac{6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{4 \mathrm{~mol} \mathrm{NH}_{3}}=1.39 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \times \frac{18.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=25.1 \mathrm{~g} \mathrm{H} \mathrm{O}$
$\frac{21.8 \mathrm{~g} \mathrm{H} \mathrm{H}_{2} \mathrm{O}}{25.1 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}} \times 100 \%=86.9 \%$ yield
4. Suppose 4.61 g of zinc was allowed to react with hydrochloric acid to produce zinc chloride and hydrogen gas. How much zinc chloride should you get?
Suppose that you actually recovered 8.56 g of zinc chloride. What is your percent yield? From here on, moles are understood in the BCA table.

Change $\quad-0.0705 \quad+0.0705$
After $0 \quad 0.0705$
$4.61 \mathrm{~g} \mathrm{Zn} \times \frac{1 \mathrm{~mol} \mathrm{Zn}}{65.4 \mathrm{~g} \mathrm{Zn}}=0.0705 \mathrm{~mol} \mathrm{Zn} \times \frac{1 \mathrm{~mol} \mathrm{ZnCl}_{2}}{1 \mathrm{~mol} \mathrm{Zn}}=0.0705 \mathrm{~mol} \mathrm{ZnCl} l_{2} \times \frac{136.3 \mathrm{~g} \mathrm{ZnCl}}{2} 1 \mathrm{~mol} \mathrm{ZnCl}_{2} \quad 9.61 \mathrm{~g} \mathrm{ZnCl}_{2}$
$\frac{8.56 \mathrm{~g} \mathrm{ZnCl}_{2} \text { actual }}{9.61 \mathrm{~g} \mathrm{ZnCl} 1_{2} \text { theoretical }} \times 100 \%=89.1 \%$ yield

