

1. Sulfur reacts with excess oxygen gas to produce sulfur trioxide. In the balanced equation, when 2 moles of sulfur react, 791.4 kilojoules are released
a) Write the balanced chemical equation

$$
]_{8}+2 \mathrm{~S}_{2}+791 \mathrm{~kJ}
$$

b) In your answer to (a), include the energy term as either a reactant or product. In other words, to the balanced equation you wrote above, write 791.4 kJ onto either the right or left side, depending on whether you think the reaction took in or gave off energy.
c) Rewrite the balanced reaction but now show the energy term using ΔH notation.

$$
\mathrm{S}_{\mathrm{B}}+12 \mathrm{O}_{2} \rightarrow 8 \mathrm{SO}_{3} \Delta \mathrm{HH}=-79 \mathrm{~kJ}
$$

d) Tell whether the reaction is endothermic or exothermic: \qquad
EX OTHERMIE
e) What mass of oxygen gas is consumed when 35 kJ are released in the reaction above?
f) How much energy is released by the reaction when 50.0 grams of sulfur react?
2. Nitrogen gas and oxygen gas can combine to produce nitrogen monoxide, NO. In the balanced reaction when one mole of N_{2} reacts, the reaction absorbs 88.0 kJ of energy from the surroundings.
a) Write the balanced chemical equation

$$
88+\frac{\mathrm{N}_{2}}{}+\frac{\mathrm{O}_{2}}{2}+2 \mathrm{NO}
$$

b) In your answer to (a), include the energy term as either a reactant or product. In other words, to the balanced equation you wrote above, writoratadef onto either the right or left side, depending on whether you think the reaction took in or gave off energy.
c) Rewrite the balanced reaction but now show the energy term using $\Delta \mathrm{H}$ notation.

d) Tell whether the reaction is endothermic or exothermic: \qquad
e) What mass of nitrogen monoxide gas is produced when 35 kJ are absorbed in the reaction above?
f) How much energy is absorbed by the reaction when 0.697 grams of nitrogen react?
[Renun of Friday's quiz question that was also on the Piggy Bank Worksheet and the Wheelbarrow Worksheet.]
3. Calculate the molarity of each ion present in the following solution. A 0.04661 mole sample of calcium chloride is dissolved in enough water to make 225 mL of solution.
a) Determine the molar concentration of chloride ion $\left[\mathrm{Ca}^{2+}\right]$ in this solution
b) Determine the molar concentration of chloride ion [Cl-] in this solution dissolving 0.340 moles of $\mathrm{NH}_{4} \mathrm{Br}$ in enough water to make 2.25 L of solution?

How many liters of solution must you make if you wish to use 7.10 moles of potassium bromide and you want the molarity to be 0.0500 M ?

How many water molecules are present in the water bottle at STATION A?
...AND I AM A ZOMBIE!

$$
=\frac{0.340_{\text {moles }}}{2.25 \mathrm{~L}}=\text { Molarity } \quad\left[\begin{array}{l}
\text { ANSWER } \\
0.151 \mathrm{M}=\text { molarity }]
\end{array}\right.
$$

What is the molarity of solution made by dissolving 0.740 moles of $\mathrm{NH}_{4} \mathrm{Br}$ in enough water to make $840 . \mathrm{mL}$ of solution? If you dissolve 35.0 grams of aluminum chloride in enough water to make a solution with 300 mL what wilt the molarity be?
\times What is the mass, in grams, of the molecules shown at STATION C?

Fix the units: $840 \mathrm{~mL} \rightarrow 0.840$ liters
N molarity $=\frac{\text { moles }}{L} \quad$ molarity $=\frac{0.740 \mathrm{~mol}}{.840 \mathrm{~L}}$

The molecules at Station C

"RETINOL", A NUTRIENT NECESSARY FOR VISION. ITS MOLECULAR WEIGHT

IS 286.45 GRAMS PER MOLE

