$$
\begin{array}{l|ll|l|l}
\text { Zombie Answers } \\
\hline 1 & 0.151 \mathrm{M} & 2 & 0.88 \mathrm{M} \\
3 & 142 \mathrm{~L} & 4 & 0.87 \mathrm{M} \\
5 & 9.060 \\
\hline 1.8 \times 10^{24} & 6 & 8.09 \times 10^{-21} \mathrm{grams} \\
7 & 1 \times 10^{-11} \mathrm{M} & 8 & 7.39 \times 10^{-5} \mathrm{M} \\
9 & 3.9 \mathrm{M} & 10 & 91 \text { grams }
\end{array}
$$

I AM A BRAIN...

\qquad

What is the molarity of solution made by
$\stackrel{\circlearrowright}{\circ}$ dissolving 0.340 moles of $\mathrm{NH}_{4} \mathrm{Br}$ in enough water to make 2.25 L of solution?

How many liters of solution must you make if you wish to use 7.10 moles of potassium bromide and you want the molarity to be 0.0500M?

How many water molecules are present in the water bottle at STATION A?

$\stackrel{C}{0}$	If you dissolved the molecules at STATION C in enough liquid to make $2.81 \times 10^{-12} \mathrm{~L}$ of solution what would be the molarity of the solution?

If you dissolve 35.0 grams of nitrogen
$\underset{\text { © }}{ \pm}$ monoxide in enough water to make a solution with 300 mL what wil the molarity be?

I AM A BRAIN...

\qquad

What is the molarity of solution made by dissolving 0.740 moles of $\mathrm{NH}_{4} \mathrm{Br}$ in enough water to make $840 . \mathrm{mL}$ of solution?

If you dissolve 35.0 grams of aluminum
$\frac{5}{5}$ chloride in enough water to make a solution with 300 mL what wil the molarity be?

What is the mass, in grams, of the molecules shown at STATION C?

If you dissolved 4.50×10^{-3} grams of Calcium Chloride in enough liquid to make 520. mL of solution what would be the molarity of the solution?

How many grams of potassium nitrate will you need to make a solution that has a volume of 1.20 L and has a molarity of 0.75 M ?

The molecules at Station C

"RETINOL", A NUTRIENT NECESSARY FOR VISION

CLASS
NOTES:

PURPOSE: WHAT ARE SOLUTES?
WARMUP, Fill in, if you can guess any...
Memorize these SUFURIC ACID $\frac{\mathrm{H}_{2} \mathrm{SO}_{4}}{\text { HYDROCHLORIC ACID }} \begin{aligned} & \mathrm{HCl} \\ & \text { PHOSPHORIC ACID } \\ & \text { CARBONIC ACID } \frac{\mathrm{H}_{3} \mathrm{PO}_{4}}{\mathrm{H}_{2} \mathrm{CO}_{3}}\end{aligned}{ }^{2}$
How things dissolve:

$C N$ is the solute and Hat is the solvent

AND I AM A ZOMBIE!

	inventory:	formula
conc	-	conc $=\frac{\text { moles }}{\text { volume }}$
moles	0.340 mol	conc: $=0.151 \mathrm{M}$
volume	2.25 L	conc $=\frac{(.340-)}{(2.25 \mathrm{~L})}$

	conc	0.0500 M	formula:	
Moles	7.10 moles	vol $=\frac{\text { moles }}{\operatorname{conc}}$	vol $=\frac{7.10 \mathrm{~mol}}{0.0500 \mathrm{Mel}}$	$\mathrm{vol}=142 \mathrm{~L}$
volume	-			

$$
17 \text { molecules } \times\left(\frac{1 \text {-de }}{6.02 \times 10^{23} \text { molecalk }}\right)=2.82 \times 10^{-23} \text { males }
$$

$$
\text { ans } 1.0 \times 10^{-11}
$$

$$
\begin{array}{r|r}
\stackrel{14.01}{16} 0.0 .0 \mathrm{~g}_{\times}\left(\frac{1 \mathrm{~mol}}{30.0 \mathrm{~g}}\right) ; 1.17 \mathrm{mal} & = \\
0.17 \mathrm{md} \\
0.3 \mathrm{~L} & =3.9 \mathrm{M}
\end{array}
$$

...AND I AM THE ZOMBIE!

\mathbf{N}	$\frac{.740 \mathrm{~mol}}{.840 \mathrm{~L}}=0.88$ mols per liter
. Answer:	

Formula $\quad \operatorname{conc}=\frac{\text { moles }}{\text { volume }} \quad$ conc $=\frac{4.05 \times 10^{-5} \mathrm{ml}}{0.520 \mathrm{~L}}$

Gas volume and limiting reagent
CheMistry: htip://genest, wicobly com stop in for help every day at lunch and Tues \&Ttuurs after school

1. What is the volume of one mole of any gas at STP? 22.4 liters. Always.
2. How many grams of potassium nitrate will you need to make a solution that has a volume of 1.20 L and has a molarity of 0.75 M ?
concent.
volume modes
0.75 M
1.20 L
moles $=$ volume \times concentration
moles $=(1.201) \times\left(0.75 \frac{5}{2}\right)$
moses $=0.90$ miles

Directions: Turn the following into balanced equations by filling in the blanks with the correct KNO_{3} is $101.11 \mathrm{~g} / \mathrm{mol}$ on periotic table 50. \therefore

$$
0.90 \mathrm{~mol} \times\left(\frac{10 . .11 \mathrm{~g}}{1 \mathrm{~mol}}\right)=91 \text { grams } \mathrm{KNO}_{3}
$$

 coefficients, formulas of ions or solids, and names.

5.
$2 \mathrm{Ag}^{+}$
\qquad
$2 \mathrm{Fe}^{3+}$
\qquad
\qquad
$\mathrm{Mg}^{2+}+2 \mathrm{Cl}^{-}$ $\rightarrow \mathrm{Fe}_{2} \mathrm{~S}_{3}$
 barium iodide
6.
7. \qquad $\frac{2+2}{2-} \rightarrow \mathrm{MgCl}_{2}$ $\rightarrow \mathrm{CaCO}_{3}$ ammonium sulfite
8. \qquad $+$ \qquad

$$
\begin{aligned}
& \mathrm{Mg}^{2}+2+2
\end{aligned}
$$

9. $1 \mathrm{Mg}^{2+}+2 \mathrm{NO}_{2}-\rightarrow \quad \mathrm{Mg}\left(\mathrm{NO}_{2}\right)_{2}$
10.. $\mathrm{C}_{-} \mathrm{Cu}^{2+}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}$
$11.2 \mathrm{~K}^{+}+\mathrm{CrO}_{4}^{2-} \rightarrow \mathrm{K}_{2} \mathrm{CrO}_{4}$
silver oxide iron (III) sulfide magnesium chloride calcium carbonate magnesium nitrite copper(II) hydroxide potassium chromate
10. How many molecules are in 22.4 liters of steam?
$22.42=1$ mole $=6.02 \times 10^{23} \mathrm{H}_{2} \mathrm{O}$ molecules (no math, simple definitions)
11. What is the molarity of solution made by dissolving 0.740 moles of $\mathrm{NH}_{4} \mathrm{Br}$ in enough water to make

12. What is the volume of 6.02×10^{23} molecules of Cl_{2} gas at STP? that's a mole! the volume at STP is 22.4 liters!
