TODAY - CHECK PLEES HOMEWA TURN IN ... LECTURE LAB BEFORE PURPOSE: HOW TO COUNT PARTICLES OF "ANIONS" IN AN AQUEOUS SOLUTION WARMUP "In one dissolved AlCla how many cations?" one Al3+ is the cation. #1) Show a balanced equation for (NHW)3 N Dissolving: (MHy)3 N(3) -> 3 NH4+ +1 N3-*Remember ions have charges. #2) If we had 99(NH4)3N, HOW MANY CATIONS COULD BE MADE IF DISSOLVED IN WATER? 99 ynits of X (3 CATION) = CATIONS CATIONS 1. Circle the metallic element in each. | Circle any
element that is a
metal | This substance is | When one of
these
dissolves, how
many aqueous
ious form? | |--|-------------------|--| | CusO _{4(s)} | ionic / molecular | two | | $N_2O_{4(ig)}$ | ionic / molecular | | | Circle any
element that is a
metal | This substance is | When one of these dissolves, how many aqueous ions form? | |--|----------------------|--| | Na ₂ C ₂ O _{4(s)} | ionic /
molecular | | | H ₃ PO ₄ | ionic /
molecular | | AQUEOUS Solved in lecture, 15 333 formula units of Na.C.O.463 were dissolved, how many anions would form 3. Draw a slash through the molecule to show the half that would fall off. How many pieces will this fall apart into if made into an aqueous solution? (circle your choice) | . / | | | doon (energy your choice) | | | | | | |--------------|-------|-----------------------|---|----|----|----|----|----| | ΙĶΙ | 1?(2? | 3? 4? 5?
3?) 4? 5? | AlBr ₃ | 1? | 2? | 32 | 42 | 5? | | KŽ | 12 22 | (3?)4? 5? | (NH ₄) ₂ CO ₃ | 1? | 2? | 3? | 4? | 52 | | | | 37 47 57 | Ca(CH ₃ COO) ₂ | 12 | 2? | 3? | 4? | 5? | | $Zn(NO_3)_2$ | 12 22 | 3? 4? 5? | CH3OH | 12 | 2? | 32 | 4? | 5? | - 4. True / False: Mark (T) true or (F) in each blank - (a) ____ solutions are heterogeneous mixtures - (b) ____ solutions are clear $AlBr_{3(s)}$ (c) ____ the dissolved substance will eventually settle out of a solution | IMPORTANT! Includ | ANNCED dissociation equation (something like charges (+1, +2, etc) and phase notation (s, I | $\text{ke "}A_{(s)} > B_{(aq)} + C_{(aq)}$ "). | |--|--|---| | a. Powdered K ₂ S _(s) dis | essolving to form an aqueous solution. $\frac{1}{1}$ | 5 ²⁻ | | b. CO _{2(s)} dissolving. | | | | | | | | | -> | | | c. Powdered Zn(NO | y_2 that has been poured into water and stirred t | to form a solution | | area successional vacuum | | | | | K ₂ S, were dissolved, Drow in the number | | | If 38 formula units of | K2S , were dissolved, | ? (The formula and charge of | | the cation is) | the number | ß | | | | | | | | | | | V | | | | Zn(NO ₃) ₂ were dissolved, how many anion | is would form? (The formula and charge | | of the anion is NO3 | 20760 | NOST NO | | 1000 | 38 ENNO3)2 / | Nos = Nos | | | UNITS X | - 1005 | | | | | | | 7 | n(103)2 | | 8. Drawings! | | formula units | | a. In the beaker | on the left, draw the indicated solid, repeating t | the formula three times. | | a. In the beaker | | the formula three times. | | a. In the beaker | on the left, draw the indicated solid, repeating t | the formula three times. | | a. In the beaker of | on the left, draw the indicated solid, repeating t | the formula three times. | | a. In the beaker of b. In the beaker of 9. Draw two | on the left, draw the indicated solid, repeating t | the formula three times. | | a. In the beaker of | on the left, draw the indicated solid, repeating t | the formula three times. | | a. In the beaker of b. In the beaker of 9. Draw two | on the left, draw the indicated solid, repeating to the right, draw what the substance would loo | the formula three times. | | a. In the beaker of b. In the beaker of b. In the beaker of o | on the left, draw the indicated solid, repeating to the right, draw what the substance would loo | the formula three times. | | a. In the beaker of b. In the beaker of b. In the beaker of o | on the left, draw the indicated solid, repeating to the right, draw what the substance would loo | the formula three times. | | a. In the beaker of b. In the beaker of b. In the beaker of the beaker: (NH ₄) ₂ CO ₃ | on the left, draw the indicated solid, repeating to the right, draw what the substance would loo | the formula three times. | | a. In the beaker of b. In the beaker of b. In the beaker of o | on the left, draw the indicated solid, repeating to the right, draw what the substance would loo | the formula three times. | | a. In the beaker of b. In the beaker of b. In the beaker of the beaker: (NH ₄) ₂ CO ₃ | on the left, draw the indicated solid, repeating to the right, draw what the substance would loo | the formula three times. | | a. In the beaker of b. In the beaker of b. In the beaker of the beaker: (NH ₄) ₂ CO ₃ | on the left, draw the indicated solid, repeating to the right, draw what the substance would loo | the formula three times. | | a. In the beaker of b. In the beaker of b. In the beaker of carbonates in each beaker: (NH ₄) ₂ CO ₃ (NH ₄) ₂ CO ₃ | on the left, draw the indicated solid, repeating to the right, draw what the substance would loo | AQUEOUS | | a. In the beaker of b. In the beaker of b. In the beaker of carbonates in each beaker: (NH ₄) ₂ CO ₃ (NH ₄) ₂ CO ₃ | on the left, draw the indicated solid, repeating to the right, draw what the substance would look and the substance would look solve to solve the substance would look wou | the formula three times, ook like with water added. | | a. In the beaker of b. In the beaker of b. In the beaker of carbonates in each beaker: (NH ₄) ₂ CO ₃ (NH ₄) ₂ CO ₃ (NH ₄) ₂ CO ₃ | son the left, draw the indicated solid, repeating to the right, draw what the substance would look solid. SOLID low circle a choice to induition. | AQUEOUS | | a. In the beaker of b. In the beaker of b. In the beaker of carbonates in each beaker: (NH ₄) ₂ CO ₃ (NH ₄) ₂ CO ₃ (NH ₄) ₂ CO ₃ | SOLID SOLID low circle a choice to ind ation. 1 particle 2 particles 3 pa | AQUEOUS | | a. In the beaker of b. In the beaker of b. In the beaker of the beaker of the beaker of the beaker of the beaker: (NH ₄) ₂ CO ₃ (NH ₄) ₂ CO ₃ (NH ₄) ₂ CO ₃ 10. For each molecule be expect it to form in solution (a) C ₂ H ₃ OH (b) SO ₃ | SOLID SOLID SOLID Iow circle a choice to ind ation. 1 particle 2 particles 3 pa 1 particle 2 particles 3 pa | AQUEOUS | | a. In the beaker of b. In the beaker of b. In the beaker of carbonates in each beaker: (NH ₄) ₂ CO ₃ (NH ₄) ₂ CO ₃ (NH ₄) ₂ CO ₃ | SOLID SOLID low circle a choice to ind ation. 1 particle 2 particles 3 pa | AQUEOUS |