

WATER HAS SOME ELECTRIC CHARGE

SLIGHTLY SLIGHTLY NEGATIVE

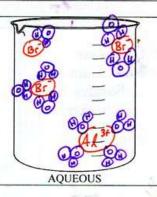
Bottom
is slightly

Positive

1. Circle the metallic element in each.

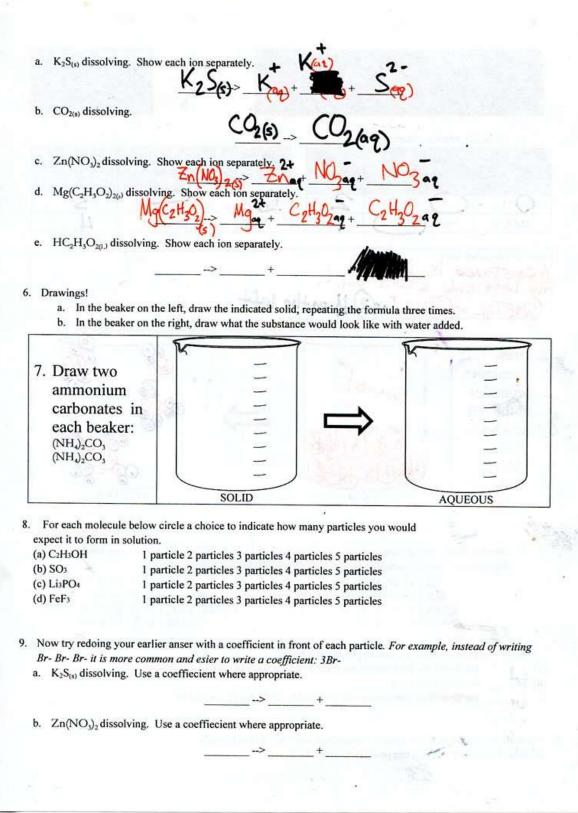
Circle any element that is a metal	This substance is	When one of these dissolves, how many aqueous
(Cu)sO _{4(s)}	ionic / molecular	2
N ₂ O _{4((g)}	ionic / molecular	123

Circle any element that is a metal	This substance	When one of these dissolves, how many aqueous ions form?
Na)C2O4(s)	ionic molecular	3
H ₃ PO ₄	ionic /	4

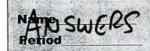

space to take lecture notes: A substance is jonic if. the left side starts with OMETAL or 2NHy or 3) H on the left.

2. Draw three aluminum bromides in the left beaker:
AlBr_{3(s)}
AlBr_{3(s)}

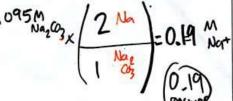
AlBr_{3(s)}



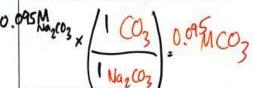
Draw a slash through the molecule to show the half that would fall off. How many pieces will this fall apart into if made into an aqueous solution? (circle your choice)


	1? 2? 3? 4? 5?	AlBr ₃	1?	2?	3?	42	5?
	1? 2? 3? 4? 5?	(NH ₄) ₂ CO ₃	12	2?	3?	4?	5?
MgCO ₃	1? 2? 3? 4? 5?	Ca(CH ₃ COO) ₂					
$Zn(NO_1)$	1? 2? 3? 4? 5?	CH,OH					

- 4. True / False: Mark (T) true or (F) in each blank
- (a) ____ solutions are heterogeneous mixtures
- (b) ____ solutions are clear
- (c) ____ the dissolved substance will eventually settle out of a solution
- 5. For each, write a dissociation equation (something like " $A_{(s)} >> B_{(aq)} + C_{(aq)}$ "). Include charges (+1, +2, etc) and phase notation (s, L, g, aq)

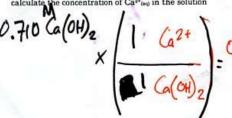

1. Draw a particle diagram of each of these ionic substances in solution. Then calculate the molarity of each ion present in each of the following solutions.

a. 0.095 M Na₂CO_{3(aq)} particle picture:


(Na

calculate the concentration of CO₃l² (eq) in

b. 0.7 M Na2CrO4



late the concentration of Naton in the solution

c. 0.710 Ca(OH)2

calculate the concentration of OH too in the solu