

1. What happens to pressure in a sample of gas if you make the new volume triple the original and keep temperature at 310 K the whole time?
2. What happens to temperature if you make the new volume $1 / 4$ of the original and the new pressure $1 / 3$ of the original?
3. 300. L of nitrogen gas is measured at the standard pressure. What volume will the gas occupy at a pressure of 690 mm Hg ?
1. A $71.6-\mathrm{mg}$ sample of pentothenic acid (a vitamin B) gives off 3.84 L of nitrogen gas at $23^{\circ} \mathrm{C}$ and 785 mmHg . What is the volume of nitrogen at STP?
2. A bottle of nitrogen was collected at $0^{\circ} \mathrm{C}$. Assuming the pressure remains constant at what temperature would the volume be triple?
3. A 38.08 g sample of nitrogen is sealed in a 7.00 L container and at a temperature of $327^{\circ} \mathrm{C}$. What is the pressure of the gas?
4. Calcium carbide reacts with water to produce acetylene gas, $\mathrm{C}_{2} \mathrm{H}_{2}$.

$$
\mathrm{CaC}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})
$$

Calculate the volume (in liters) of acetylene produced at $26^{\circ} \mathrm{C}$ and 684 mmHg when 35.6 grams of water react with plenty of CaC_{2}.
8. Magnesium burns in air to produce magnesium oxide, MgO , and magnesium nitride, $\mathrm{Mg}_{3} \mathrm{~N}_{2}$. Magnesium nitride reacts with water to give ammonia.

$$
\mathrm{Mg}_{3} \mathrm{~N}_{2}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 3 \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{NH}_{3}(\mathrm{~g})
$$

What volume of ammonia $\left(\mathrm{NH}_{3}\right)$ gas at $24^{\circ} \mathrm{C}$ and 753 mmHg will be produced from 4.56 g of magnesium nitride?
9. How many moles of hydrochloric acid must react with excess calcium carbonate to form 18.0 L of CO_{2} at STP?
$\mathrm{CaCO}_{3(\mathrm{~s})}+2 \mathrm{HCl}_{(\text {aqq })} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(1)}+\mathrm{CO}_{2(g)}+\mathrm{CaCl}_{2(\mathrm{aq)})}$
10. How many liters of ozone can be destroyed at $220 . \mathrm{K}$ and 5.00 kPa if 250 g of chlorine reacts with ozone according to the following equation?
$\mathrm{Cl}_{2(g)}+2 \mathrm{O}_{3(\mathrm{~g})} \rightarrow 2 \mathrm{ClO}_{(g)}+2 \mathrm{O}_{2(g)}$

